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While Eulerian schemes work well for most gas flows, they have been shown to
admit nonphysical oscillations near some material interfaces. In contrast, Lagrangian
schemes work well at multimaterial interfaces, but suffer from their own difficulties
in problems with large deformations and vorticity characteristic of most gas flows.
We believe that the most robust schemes will combine the best properties of Eulerian
and Lagrangian schemes. In this paper, we propose a new numerical method for
treating interfaces in Eulerian schemes that maintains a Heaviside profile of the den-
sity with no numerical smearing along the lines of earlier work and most Lagrangian
schemes. We use alevel set function to track the motion of a multimaterial interface in
an Eulerian framework. In addition, the use of ghost cells (actually ghost nodes in our
finite difference framework) and a new isobaric fix technique allows us to keep the
density profile from smearing out, while still keeping the scheme robust and easy to
program with simple extensions to multidimensions and multilevel time integration,
e.g., Runge—Kutta methods. In contrast, previous methods used ill-advised dimen-
sional splitting for multidimensional problems and suffered from great complexity
when used in conjunction with multilevel time integrators; 1999 Academic Press

1. INTRODUCTION

Eulerian schemes work well for most problems and can accurately and efficiently har
large deformations characteristic of gases. However, they can admit nonphysical oscillat
near material interfaces due to the smeared out density profile and the radical chanc
equation of state across a material interface. Lagrangian schemes work well on mat
interfaces, since they do not smear out the density profile and it is clear which equatiol

1 Research supported in part by ONR N00014-97-1-0027 and ONR N00014-97-1-0968.
2 Performed under the auspices of the U.S. Department of Energy.

457

0021-9991/99 $30.00
Copyright(© 1999 by Academic Press
All rights of reproduction in any form reserved.



458 FEDKIW ET AL.

state is valid at each point. Unfortunately, Lagrangian schemes have their own probl
when subjected to large deformations such as those characteristic of gas flow. For a
summary of both Eulerian and Lagrangian schemes, see [3].

Our method consists of combining the robustness of an Eulerian scheme with a multil
terial interface method characteristic of a Lagrangian scheme. We do this by tracking
interface with a level set function [25, 31] which gives the exact subcell interface locatic
At this interface, we solve an approximate Riemann problem similar to the methods in [
5, 4]. In [11, 5, 4] the authors use schemes that are intricate in one dimension and
only be extended to multiple dimensions with dimensional splitting in time. In additio
multilevel time integrators, such as the Runge—Kutta methods, are hard to implement
these methods. In contrast, our method draws on ideas from [30] which enables us to
multidimensional calculations without time splitting and allows the easy and efficient ir
plementation of Runge—Kutta methods. This is done with an elegant use of ghost cells
the application of a new isobaric fix technique [7].

We make note of an alternative method of solving interface problems with Euleri
schemes. In[18, 15, 6] the authors allow the errors in density associated with a smeare
material interface, while using special numerical techniques to reduce or remove the el
in the pressure and velocity. While some of the preliminary results with a gamma law g
see e.g., [32] (computed with the method in [18]), are extremely promising, itis unclear t
it will always be possible to remedy the errors associated with a smeared out density prc
In fact, the general pressure evolution equation [6] has a discontinuous coefficient with
meaningful regularization for general equations of state. We have pushed this equation
limits in [22] and have been disappointed by its lack of robustness. In general, we advo
schemes which do not smear out the density profile.

2. EQUATIONS

2.1. Euler Equations

The basic equations for two-dimensional compressible flow are the 2D Euler equatic

0 pu pv
u 2 uv
ol IR B IR B -0, (@)
PV puv pve+ P
E ¢ (E+ puu (E+ pv

X y

wheret is time,x andy are the spatial dimensionsis the densityl andv are the velocities,
E is the total energy per unit volume, apds the pressure. The total energy is the sum o
the internal energy and the kinetic energy,
2 2
E = pe+ M’ (2)
2

wheree is the internal energy per unit mass. The one-dimensional Euler equations
obtained by setting = 0.

In general, the pressure can be written as a function of density and internal ene
p=p(p, ), or as a function of density and temperatuyse; p(p, T). In order to complete
the model, we need an expression for the internal energy per unit masseSimege, T)
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we write
aoe oe
=|— — T
o (), o (),
which can be shown to be equivalent to
-T
de= (7p sz>d,0+CvdT, (4)
0

wherec, is the specific heat at constant volume [2].

The sound speeds associated with the equations depend on the partial derivatives ¢
pressure, eithep, and pe or p, and pr, where the change of variables from density anc
internal energy to density and temperature is governed by the relations

P—Tpr
Po = Pp — (Cupz> Pr ()
1
Pe = Bp + (C) Pr (6)

and the sound speeds given by

C=4/P+ 7 (7
for the case where = p(p, e) and
T(pr)?
C= P, + CF;TZ (8)

for the case where = p(p, T).

The eigenvalues and eigenvectors for the Jacobian matfigdé)fare obtained by setting
A=1andB = 0inthe following formulas, while those for the Jacobia&gt)) are obtained
with A=0andB =1.

The eigenvalues are

AMl=t—-c 22=23=0, A*=0+c (9)

and the eigenvectors are

b, a byu A byv B by

1_ [ X It -t e
L= (2 T T2 T T2 T2 2) ’ (10)
L% = (1 — by, byu, byv, —by), (11)
L®=(®,B,—A 0, 12)

b, a byu A bv B by

4 _ (e & H¥ At - 2
L= <2 2" 2 T T2 T 2)’ (13)
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1 1
1| u—Ac 2 u
Ri=| " ool R°= v | (14)
H —dc H—g
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B u+ Ac
RS = RY = 1
Al v+ Bec |’ (15)
—? H +Gc
where
g?=u®+v?, GO=Au+Bv, ©=Av-—Bu, (16)
r E
F:E’ CcC= pp—f-ip, H :ﬁ’ (17)
P P P
I 2
b1:?, b =1+ big° — by H. (18)

The eigensystem for the one-dimensional Euler equations is obtained by settibg

2.2. Level Set Equation

We use the level set equation
¢t + Ugpx + vy = 0 (19)

to keep track of the interface location as the zero leved.dh generalp starts out as the
signed distance function, is advected by solving Eq. (19) using the methods in [12],

then is reinitialized using
b1+ S(o) (/03 + 93— 1) =0 (20)

to keep¢ approximately equal to the distance function near the interface where we ne
additional information. In this equatio®(¢,) is the sign function o, with appropriate
numerical smearing. More details are given in the Appendix.

We note that our method allows us to solve Eq. (19) independently of the Euler equatic
That is, Eq. (19) can be solved directly using the method in [12], and the eigensystem
the Euler equations does not depen@osince we will be solving only one phase problems
with any given eigensystem (see the later sections). For details on the level set functior
[25, 31].

2.3. Equations of State

We will use the following equations of state in our numerical examples.

2.3.1. Gamma Law Gas

For an ideal gap=pRT where R=R,/M is the specific gas constant, witR, ~

8.31451ﬁ the universal gas constant akdthe molecular weight of the gas. Also valid
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foranideal gas is, — ¢, = Rwherec, is the specific heat at constant pressure. Additionally
gamma as the ratio of specific heats- cp/c, [2].
For an ideal gas, Eq. (4) becomes

de=c,dT (21)

and assuming that, does not depend on temperature (calorically perfect gas), we integr:
to obtain

e=c¢,T, (22)

where we have setto be zero at 0 K. Note thatis not uniquely determined, and we could
choose any value farat 0 K (although one needs to use caution when dealing with mo
than one material to be sure that integration constants are consistent with the heat re
in any chemical reactions that occur).

Note that we may write

R
p=pRT= —pe=(y—1pe (23)
for use in the eigensystem.

2.3.2. Tait Equation of State for Water

We use a stiff equation of state for the water,

_al”Y
p=B - —~B+A, (24)
(0]

wherey =7.15 A=10° Pa, B=3.31 x 1% Pa, andp, = 1,000 kg/mi. In addition, we
define

o Bp?1 B—A
(v —Dpb o

(25)

at the internal energy per unit mass [33].

Note that this equation of state hps= 0 which causes a division by zero in the fourth
component oR?. This can be avoided with simple rescaling.gfandR? by dividing and
multiplying by by, respectively. The new eigenvectors become

L?2=(-9?+H,u,v, -1 (26)
and
by
b
R? — o 27)
blv
byH—1

In addition to model cavitation, the minimum pressure is set tohe= 22.0276 Pa [33].
That is, the equation of state becomes pmi, for all densities that would admit pressures
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lower thanpmn. Thus, all partial derivatives of pressure are identically zero for densitie
below

1
n—A+B\7
Pmin = Po(%) (28)

and this causes problems in the eigensystem since the sound speed is how zero. To re
this problem we use a central scheme [23] wpea pmin.

2.3.3. JWL Equation of State for Explosive Products

We use the following JWL (Jones—-Wilkins—Lee) equation of state for explosive produc

R R
p= A(l— P )exp(— 1'0°> + B(l— @p )exp(— 2'O°> +wpe, (29)
R100 o R0 P
whereA=5.484x 10 Pa,B =9.375x 10° Pa,R; =4.94, R, =1.21, » =0.28, andp, =
1,630 kg/nd [33].

3. NUMERICAL METHOD

We use the level set function to keep track of the interface. The zero level marks the Ic
tion of the interface, while the positive values correspond to one fluid and the negative val
correspond to the other. Each fluid satisfies the Euler equations described in the last se
with different equations of state on each side. Based on the work in [12], the discretizat
of the level set function can be done independent of the two sets of Euler equations.

Besides discretizing Eq. (19) we need to discretize two sets of Euler equations. This
be done with the help of ghost cells. We will describe the scheme with an excessive us
ghost cells for the sake of clarity and comment on efficiency later.

Given a level set function, it defines two separate domains for the two separate flu
i.e., each point corresponds to one fluid or the other. Our goal is to define a ghost ce
every point in the computational domain. In this way, each grid point will contain the ma:
momentum, and energy for the real fluid that exists at that point (according to the sigr
the level set function) and a ghost mass, momentum, and energy for the other fluid
does not really exist at the point (it is on the other side of the interface). Once the gt
cells are defined, we can use standard methods, e.g., see [30], to update the Euler equ
at every grid point for both fluids. Then we advance the level set function to the next tii
step and use this to determine which of the two multidimensional spatial discretization:
use at a given grid point. This makes multidimensional implementation trivial, since it
done in the usual straightforward way, i.e., in the usual way for a single phase fluid with
special concern for the interface, e.g., see [30]. In contrast, [11, 5, 4] all need ill-advit
dimensional splitting for multidimensional problems.

Consider a general time integrator for the Euler equations. In general, we construct r
hand sides of the ordinary differential equation for both fluids (based on the method:
[30]), then we advance the level set to the next time level and pick one of the two right he
sides to use for the Euler equations based on the sign of the level set function. This
be done for every step and every combination of steps in a multistep method. Since |
fluids are solved for at every grid point, we just choose the appropriate fluid based on
sign of the level set function. This is incredibly simple to program and apply as oppos
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to complexity and decision making involved with the use of multilevel time integrators
[11, 5, 4].

To summarize, the method described here is trivial to implement. Use ghost cells
define each fluid at every point in the computational domain. Update each fluid separa
in multidimensional space for one time step or one substep of a multistep time integr:
with standard methods. Then update the level set function independently using the real
velocities and the sign of the level set function to decide which of the two answers is the v
answer at each grid point. Keep the valid answer and discard the other so that only one
is defined at each grid point. Note that multistep time integrators will also require one
save the right hand side of the ordinary differential equation for both fluids for possible t
at a later time level. Then define new ghost cells and start over. In this we have regul:
all the difficult decision making about special cases on interface crossing, cut cells, etc
the subroutine that decides how to define the ghost cells. In fact, the entire method re
on the ability to produce ghost cells that satisfy the appropriate boundary conditions
the Euler equations. In this way, one can compute solutions to multiphase flow proble
with one’s own favorite single phase solver by adding a new routine to define and deal v
ghost cells. We chose to use the ENO scheme and TVD Runge—Kutta methods from [:

Last, we note that only a band of 3 to 5 ghost cells on each side of the interface is
tually needed by the computational method depending on the stencil and movement o
interface. One can optimize the code accordingly.

4. DEFINING THE GHOST CELLS

Since a standard one phase solver will be used, the ghost nodes are the key to the num
method. We have discovered that a straightforward boundary condition capturing apprc
yields surprisingly good results as is demonstrated by our numerical examples.

4.1. One Dimension

To define the ghost nodes in one spatial dimension, three quantities must be define
the ghost region. Then the equation of state along with the appropriate algebraic relat
can be used to get the mass, momentum, and energy.

We choose pressure and velocity as two of our three variables for physical reason:
many problems, pressure and velocity are continuous across the interface and we ce
the pressure and velocity of the ghost fluid identically equal to the pressure and velo
of the real fluid at each point. That is, node by node we can copy the real fluid values
pressure and velocity into the ghost fluid values of pressure and velocity. In this way
capture the interface boundary conditions for the pressure and velocity without explic
identifying the interface location. Some modification of this procedure is necessary wik
the pressure and velocity are discontinuous as will be discussed in a future paper.

Once the pressure and velocity have been defined at each ghost node, one more qu
needs to be defined. In [7], it was shown that one degree of freedom exists at a mat
interface or contact discontinuity. This degree of freedom corresponds to the advectio
entropy in the linearly degenerate field. Note that entropy is generally discontinuous
contact discontinuity. When one applies a standard finite difference scheme to a discol
uous function, large errors result since the truncation error is not small. Shock captul
methods have traditionally avoided the large dispersive errors with a myriad of spe
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techniques while still allowing the large dissipative errors that are usually harmlessin a «
phase computation. However, these large dissipative errors can be the source of spu
oscillations in a two phase computation.

We eliminate the dissipative errors in the numerical method by using one sided extrap
tion of the entropy. Defining the ghost cells with one sided extrapolation of the entropy v
create a continuous entropy profile and remove the large errors due to numerical dissipa
Note that the discontinuous nature of the entropy profile dictates that one sided extre
lation will capture the appropriate boundary condition. As discussed in [7], there is a ti
degree of freedom at a contact discontinuity and one has some choice as to which var
to extrapolate, although one needs to use caution since there will be different degree
“overheating” errors depending on the variable chosen. See [7] for details.

At this point, we describe the method in detail. Suppose that the zero level of the le
set function lies between nodieandi + 1, i.e., the level set function changes sign betwee
these nodes. Then fluid 1 is defined at nodend to the left of nodé, while fluid 2 is
defined at nodé + 1 and to the right of node+ 1. In order to update fluid 1, we need
to define ghost fluid values of fluid 1 at nodes to the right and including nadé. For
each of these nodes, we define the ghost fluid value by combining fluid 2's pressure
velocity at each node with the entropy of fluid 1 from nade€his is constant extrapolation
of entropy which is actually preferred over high order extrapolation since our interface v
behave in a fashion similar to the piston in [7] suffering from “overheating” errors. In fa
we always use constant extrapolation of entropy to minimize the “overheating” errors. ¢
Fig. 1 for a schematic outlining the details of this process for the fluid on the left. Likewis
we create a ghost fluid for fluid 2 in the region to the left and including modihis is done
by combining fluid 1's pressure and velocity at each node with the entropy of fluid 2 frc
nodei + 1.

As discussed in [7], the isobaric fix technique can be used to reduce the “overheati
errors. This technique allows the entropy in real fluid values to change. In order to apply
isobaric fix technique, we change the entropy at nottebe equal to the entropy at node
i — 1 without modifying the values of the pressure and velocity at riodékewise, we

Interface
Fluid 2

P=pressure i+1 i+2 i+3

V=velocity . ‘ .

S=entropy

PV P P
S
® ® © ©®
i-2 i-1 i
Fluid 1 Ghost Cells

FIG. 1. Ghost fluid method—no isobaric fix.
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S=entropy
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——
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FIG. 2. Ghost fluid method—isobaric fix.

change the entropy at node- 1 to be equal to the entropy at nade 2. This completes the
isobaric fix, and then the ghost cells are defined as outlined above using these new vz
for the entropy. See Fig. 2 for a schematic outlining the details of this process for the fl
on the left.

Note that the isobaric fix can be combined with the ghost node population in a sim
way. For the nodes to the right and including nodeombine the pressure and velocity of
each node with the entropy from node- 1. This defines fluid 1 to the right and including
nodei. For the nodes to the left and including nade1, combine the pressure and velocity
of each node with the entropy of node- 2. This defines fluid 2 to the left and including
nodei + 1. This method is especially effective in multidimensional implementation.

An important aspect of this method is its simplicity. We do not need to solve a Riema
problem, consider the Rankine—Hugoniot jump conditions, or solve an initial bound:
value problem at the interface. We capture the appropriate interface conditions by defil
a fluid that has the pressure and velocity of the real fluid at each point, but the entrop
some other fluid. Consider the case of air and water. In order to solve for the air, we repl
the water withghost airthat acts like the water in every way (pressure and velocity) bt
appears to be air (entropy). In order to solve for the water, we replace the aighagt
water that acts like the air in every way (pressure and velocity) but appears to be we
(entropy). Since the ghost fluids behave in a fashion consistent with the real fluids that t
are replacing, the appropriate boundary conditions are captured. Since the ghost fluids
the same entropy as the real fluid that is not replaced, we are solving a one phase prol
We name this method the “Ghost Fluid Method,” not to be confused with ghost cells
ghost nodes which are used in the implementation of the method and have been in us
quite some time.

4.2. Justification

Here we provide a justification of why our method works. Consider the case of a sc
wall boundary, where a reflection condition is used for the ghost cells. One can think
this as prescribing waves in the ghost region which are identical to those in the real f
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so that the real fluid does not escape when it interacts with the boundary. Instead, it -
its reflected twin and behaves as if the boundary were impenetrable [34]. Now conside
interface anywhere in a fluid. We want the fluid on one side of the interface to behave
the appropriate way when we add our ghost cells, and thus the easiest thing to do is t
all the ghost values be equal to the real fluid values at that point. In this way, the ghost c
do nothing and the scheme is just the standard Eulerian scheme.

Unfortunately this standard Eulerian scheme does not behave well in certain situatic
just as the piston does not behave well in [7] due to “overheating.” This implies tha
simple modification of the ghost cells is needed similar to [7]. We noticed in [7] that tt
only modification necessary to cure “overheating” was an isobaric fix. If one thinks of t
smearing out of the density profile in a contact discontinuity as a phenomena simila
“overheating” then it becomes obvious that the isobaric fix technique will work well her
Thus, the only modification in the ghost cells is to use the isobaric fix technique, wh
leaving the pressure and velocity unchanged.

4.3. Multidimensions

The above procedure is for one dimensional problems and as trivial as it seems, it
the job. For multidimensional problems, the ghost cells become more involved. We h:
more than one velocity to deal with, and we need to make some choices for the directio
extrapolation. In multidimensions, we treat the pressure and the three dimensional velc
field in the usual way, just defining the ghost values equal to the real fluids values. In or
to finish the ghost cell procedure, we need to apply the isobaric fix technique to all the ¢
bordering the interface, and we need to extend the isobaric fix variable into the ghost re
in a fashion that resembles the constant extrapolation done in the one dimensional ca:

A natural way applying the isobaric fix technique exists because of the level set forn
lation. Using the level set functon, we can define the unit normal at every grid point as

V¢

7] (30)

and then solve a partial differential equation for constant extrapolation in the normal dir
tion. This equation is

li+N-VI =0, (31)

wherel is the isobaric fix variable, e.g., the entropy. Note that the nofallways points
from the negative fluid into the positive fluid. We use thesign in Eq. (31) to populate
a ghost fluid in the region whekg > 0 with the values of from the region where <0,
while keeping the real fluid values offixed in the region where < 0. Likewise, we use
the— sign in Eq. (31) to populate a ghost fluid in the region whiere0 with the values of

| from the region where > 0, while keeping the real fluid values bffixed in the region
whereg¢ > 0. This equation only needs to be solved for a few time steps to populate a t
band of ghost cells needed for the numerical method. Once the ghost cells are popul
we can reassemble the conserved variables.

Note that the above procedure does not apply an isobaric fix to the cells in the real fl
which border the interface. In order to apply the isobaric fix, we keep the real fluid valu
of | fixed in the region where < —e when using thet sign in Eq. (31), and we keep the
real fluid values ofl fixed in the region where > ¢ when using the- sign in Eq. (31).
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Sinceg is an approximate distance function, we choesebe the thickness of the band in
which we wish to apply the isobaric fix. We use= 1.5AX.

4.4. Boundary Conditions

In some multimaterial problems, large jumps in tangential velocity exist at the interfe
similar to the jumps in density and equation of state that we remedy in this paper. M
schemes will smear out this jump in tangential velocity due to numerical dissipation.
extension of our method allows one to avoid this smearing.

We use the interface normall, to separate the three component velocity field into
tangential and a normal component. The normal component is treated in the same fas
as the velocity in one dimension, i.e., we copy the normal velocity directly into the ghc
cells with no change. The tangential velocity is handled in the same way as the isobari
variable, i.e., the goal is to extrapolate it or extend it as a constant in the normal directior
two dimensions, a tangent vector must be chosen consistently in one direction or the o
Inthree dimensions, one has a difficult time choosing a consistent two dimensional basi:
the tangent plane. We remove the difficulty in extension to higher dimensions by apply
a basis free projection method similar to the CPM (complementary projection method) |

We define the normal at each point by Eq. (30) and the velocity &3u, v, w). Once
there are defined, we solve the propagation Eq. (31) wh&eow a column vector of
length four which contains the three dimensional velocity field and the isobaric fix variak
Then at every cell in the ghost region we have two separate velocity fields, one from
real fluid and one from the ghost fluid. Then for each velocity field, the normal compon
of velocity, Vy =V - N, is put into a three component vectdfy N, and then we use a
complementary projection idea to define the two dimensional velocity field in the tang
plane by another three component vector, VyN. Then we take the normal component of
velocity, VNN, from the real fluid and the tangential component of velo®ity, Vy N, from
the ghost fluid and add them back together to get our new velocity to occupy the ghost

We present a simple model to illustrate how the method works. Consider a line in t
dimensions or a plane inthree dimensions which defines a material interface. Assume the
normal component of velocity is constant across the interface, while the tangential velo
is constant on each side of the interface but jumps across the interface. Consider popul
one of the ghost regions with the velocity from the other side of the interface. Since the er
velocity field on one side of the interface is a constant, we are just advecting that cons
value into the ghost region. Then we split the velocity field into a normal and tangent
component for both the ghost cells and the real fluid. We keep the tangential compor
from the ghost fluid and the normal component from the real fluid. Since the real flt
has the same normal velocity on both sides of the interface, our procedure is equivale
just keeping both components of the ghost cell velocity field. This is equivalent to usi
a constant velocity field, and our method has no knowledge of a jump in velocity at 1
interface. This allows our method to completely avoid smearing and leads to exact mode
of planar shear waves.

Shear waves may or may not be stable [24]. For example, shear waves are stab
high Mach number flows and when materials have strength (such as steel). Beside:s
obvious smearing errors, standard schemes may suffer other problems due to their inal
to correctly model these shear waves. For example, a shear wave moving across the
will suffer from a pressure overshoot, while our scheme does not have this problem
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addition, there are many large forces that may be incorrectly excited in material models
to erroneous smeared out velocity profiles. For example, consider two pieces of steel slc
sliding past each other at room temperature. The velocity profile will smear, inducin
continuous, non-constant velocity profile in each piece of steel. This erroneous non-con:
velocity profile will induce large non-physical resistant forces from a continuum model.

In many cases a jump in tangential velocity is not stable and will lead to a Kelvir
Helmholtz instability. This instability is not well posed for the Euler equations and onl
becomes well posed when viscosity (or some other regularization such as surface ten:
is added, e.g., Navier—Stokes flow.

4.5. A Note on Conservation and Convergence

Here, we briefly discuss the issues of conservation and convergence of the nume
algorithm. The method described in this paper breaks the computational domain into
separate fluids. Within each fluid a standard conservative flux differencing scheme is u
At the interface between the two fluids, there is formally a lack of discrete conservation
a set of measure zero. Fluxes that exist between two different fluids are not unique. S
the pressure and normal velocity in each fluid are the same, these fluxes do have a ur
pressure and normal velocity. However, they differ in their values of entropy and tangen
velocities. We note that entropy and tangential velocities move with the speed of the fll
so they do not cross the interface. In addition, there will be a lack of conservation due to
advection of the level set functiog, similar to the area loss problem seen inincompressibl
flow calculations [31].

Since the scheme is formally non-conservative at the interface, we expect our schen
behave like a fully conservative scheme with@¢Ax") source term acting over the material
interface. Heren is related to the order at which we are specifying the ghost node sta
and the order in which we implement the level set method. If the interface length,is
independent of resolution, then the overall lack of conservation will I@(m‘xr‘fot L(t)dt).
Clearly if n > 0, one will achieve conservation. See Subsection 5.7 for an example wher
appears that = 2. Since in this case, conservation is achieved under resolution, and sil
our discretization is numerically consistent with the Euler equations, we expect to also
convergence to the proper weak solution. Again this is seen in Subsection 5.7.

In general, we expect that for stable interface flows, the above arguments will hold, :
the algorithm should achieve both convergence and conservation under mesh refiner
Unfortunately, the inviscid Euler equations will generally be unstable at material interfac
due to either Kelvin—Helmholtz [13] or Richtmyer—Meshkov [28] types of instabilities
In these cases, the growth rate of an infinitesimal disturbance is usually proportiona
the wavenumber of the disturbance [24] an@) is resolution dependent. Since under
refinement finer scales are introduced, it is likely thét) o« 1/ Ax™. Here, it is most likely
thatm> 0, and the length of the interface will become larger under refinement. In tt
case the error in conservation would becm(Ax”‘mféL*(t)dt), wherelL, is the length
of the interface at a particular resolution (i.e., fixed). The fact that the interface may
growing is brought outside the integral and is grouped wittWe expect conservation
under mesh refinement whan- m, and expect to lose conservation whrea m. Note that
it is very difficult in general to determine bothandm just given some initial/boundary
value problem. It may be possible that for a physically unstable problem that, in which
case under refinement one may observe a fixed (and possibly small) error in conserva
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The example in Subsection 5.8 may be of this type, but it is probably best to simply mon
the error in conservation for each problem and to attempt to determinen numerically.

It should be noted that many “fully conservative” schemes may conserve overall me
but may not conserve mass of each constituent [25]. In addition, problems where the E
equations have instabilities at all wavelengths will never be a resolved even with a perfe
conservative scheme. For the method described in this paper, conservation is achieved |
resolution for problems that have a resolvable solution.

5. EXAMPLES

Unless otherwise noted the calculations are done with 3rd order ENO-LLF (essenti:
non-oscillatory—local Lax—Friedrichs) and 3rd order TVD RK (total variation diminishin
Runge—Kutta) [30], except where the water cavitates where the 3rd order central sch
[23] is used for the spatial discretization.

5.1. Example 1

In this first example, we explore a simple one phase problem where an Eulerian sch
works well with no oscillations. We will compare our scheme to the standard Euleri
scheme.

This problem was taken from [33]. Consider a gamma law gaswithl.4 on a 4n do-
main with 100 grid points. The interface is located midway between the 50th and 51st ¢
points with left and right states defined @s= 2 kg/n?, pg =1 kg/n?, p. =9.8 x 10° Pa,
pr=2.45x 10° Pa, andi. =ur=0 % We ran the code to a final time of 0.0022 s.

The results in Fig. 3 were obtained with the standard scheme while the results in Fif
were obtained with the use of the new ghost cell technique where we choose the isol
fix variable to be entropy for extrapolation, but do not use the isobaric fix itself. Notic
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FIG. 3. Standard scheme—100 points.
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that the standard scheme produces a smeared out density and entropy profile as sho
Fig. 3. In Fig. 4, this smearing has been alleviated to a large degree since the nume
method no longer enforces continuity of the discontinuous entropy and density profiles,
instead uses our new Ghost Fluid Method. However, there are still some small error
these variables near the interface due to slight overheating near the contact discontir
which can be improved with an isobaric fix technique as discussed in [7]. In Fig. 5, we &
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the constant entropy isobaric fix to clean up the overheating. It should be noted that fi
tracking schemes can completely eliminate numercal dissipation and overheating erro
an interface as long as the interface and all discontinuities that intersect it (e.g., shocks
tracked. All three sets of results are plotted on top of the exact solution.

Note that we still capture the shock and still generate the large dissipative errors cha
teristic of shock capturing schemes. However, our contact discontinuity no longer suff
from this dilemma.

5.2. Example 2

In this example we compute solutions to Test A, Test B, Test C, and the two case:
Test D from [18] where we have redimensionalized the problems. Note that all of the
examples have solutions where thiessure is constargcross the contact discontinuity.
Because of this, the pressure evolution equation gives good results which are also shov
[18], although there are large smearing errors due to humerical dissipation.

5.2.1. TestA

For Test A we use arth domain with 100 grid points. The interface is located midway
between the 50th and 51st grid points with left and right states defingdas.4, yr =1.2,
pL =1 kg/m?, pr=0.125 kg/n¥, p. =1 x 10° Pa,pr=1 x 10* Pa, andi, =ugr =07,
We ran the code to a final time of 0.0007 s and the results with the standard scheme |
[25] are shown in Fig. 6, while the results using our new scheme with entropy as the isob
fix variable are shown in Fig. 7. Both sets of results are plotted on top of the exact soluti

Note that the contact discontinuity is shifted one grid point to the left, since we estim:
its speed with the local fluid velocity when advecting the level set function. During wa
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FIG. 6. Test A—standard scheme, 100 points.
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FIG. 7. Test A—ghost fluid method, 100 points.

interactions, the actual velocity of a contact discontinuity can vary slightly from the loc
fluid velocity. We have performed a grid refinement analysis and the contact discontint
seems to be off by one grid cell for all levels of grid refinement yielding first order col
vergence in location as expected for a discontinuity where exact conservation is relg
slightly. A more resolved solution with 400 grid points is shown in Fig. 8.
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FIG. 8. Test A—ghost fluid method, 400 points.
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FIG.9. Test B—standard scheme, 100 points.

5.2.2. TestB

For Test B we use amt domain with 100 grid points. A right going shock is located
midway between the 5th and 6th grid points and an interface is located midway betw
the 50th and 51st grid points. The left, middle, and right states are definpd-a%.4,

M = 1.4, YR= 1.67, oL = 1.3333 kg/n‘?, om=1 kg/m?, PR= 0.1379 kg/rﬁ, PL= 15 x
10° Pa,py =1 x 10° Pa,pr=1 x 10° Pa,u. =0.3535/10F ", anduy =ur=0T. We
ran the code to a final time of 0.0012 s and the results with the standard scheme from
are shown in Fig. 9, while the results using our new scheme with entropy as the isobari
variable are shown in Fig. 10. Both sets of results are plotted on top of the exact soluti

In this case, the contact discontinuity is located in the correct cell. Note that the we
rarefaction wave (located to the left) and the weak shock wave (located to the right) b
suffer from numerical dissipation at this level of resolution, independent of the sharp con
discontinuity. A more resolved solution with 400 grid points is shown in Fig. 11.

5.2.3. TestD, Case 1

This is similar to Test B, except that we increase the strength of the shockowith
4.3333 kg/n, p. = 1.5 x 10° Pa, andi, =3.2817/10° 2. We ran the code to a final time
of 0.0005 s and the results with the standard scheme from [25] are shown in Fig. 12, w
the results using our new scheme with entropy as the isobaric fix variable are show
Fig. 13. Both sets of results are plotted on top of the exact solution.

In this case, the contact discontinuity is located in the correct cell. Note that the gli
nearx =0.2m is due to the capturing of perfect shock initial data by a shock capturir
scheme. This is more pronounced in this example, since the shock wave is quite str
If one starts with a smoothed out shock profile, this glitch is no longer present. A mc
resolved solution with 400 grid points is shown in Fig. 14.
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FIG. 10. Test B—ghost fluid method, 100 points.
5.2.4. TestC

This is similar to Test B, except that we change the fluid on the rightte 1.249 pr =
3.1538 kg/nt, pr=1 x 10° Pa, andig =0 . We ran the code to a final time of 0.0017 s
and the results with the standard scheme from [25] are shown in Fig. 15, while the res
using our new scheme with entropy as the isobaric fix variable are shown in Fig. 16. B
sets of results are plotted on top of the exact solution.
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FIG. 11. Test B—ghost fluid method, 400 points.
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FIG. 12. TestD, Case 1—standard scheme, 100 points.

In this case the contact discontinuity is located in the correct cell, although the sh
wave located to the left is shifted two grid points to the right. Once again, these errors
consistent under grid refinement yielding first order accuracy in location. In addition, n
that these errors do not increase in time, since they are the result of estimating the velc
of the contact discontinuity by the local fluid velocity during wave interactions. A mot
resolved solution with 400 grid points is shown in Fig. 17.
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FIG. 13. Test D, Case 1—ghost fluid method, 100 points.
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FIG. 14. Test D, Case 1—ghost fluid method, 400 points.

5.2.5. Test D, Case 2

This is similar to Test C, except that we increase the strength of the shockwith
4.3333kg/n3, pL =1.5 x 1P Pa, andu, =3.2817/10° 2. We ran the code to a final time
of 0.0007 s and the results with the standard scheme from [25] are shown in Fig. 18, w
the results using our new scheme with entropy as the isobaric fix variable are show
Fig. 19. Both sets of results are plotted on top of the exact solution.

4.5

3.5+

2.5 < ] aol ]

% g
U

1.5

o 0.2 o.4 o.8 o.8 1 o o.z2 o.4 0.8 o.8 1

x 10 entropy

-

N b0 o NGO O Q

r=3

[=2

S S G LSy

o]
0
N
o]
>
0
o
o]
o
Y
o]

o.2 O.4 0.6 o.8 1

FIG. 15. Test C—standard scheme, 100 points.
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FIG. 16. Test C—ghost fluid method, 100 points.

In this case the contact discontinuity is located in the correct cell, although the sh
wave located to the left is shifted two grid points to the right and the shock wave loca
to the right is shifted one grid point to the right. Note that the glitches rea.3m and
x = 0.7m are due to the capturing of perfect shock initial data by a shock capturing scheil
If one starts with a smoothed out shock profile, these glitches are no longer present. Ar
resolved solution with 400 grid points is shown in Fig. 20.
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FIG. 17. Test C—ghost fluid method, 400 points.
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FIG. 18. Test D, Case 2—standard scheme, 100 points.

5.3. Example 3

We take the initial data for the shock tube problem from Test A in [18] as in Example
This time we compute in two spatial dimensions on a 200 by 200 grid with the shock tu
aligned in the diagonal direction. In Fig. 21 we show output from the off-diagonal directio
Note that we ran the code fay2 times longer in order to get a good comparison with
Test A in Example 2. The results are plotted on top of the exact solution.
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FIG. 19. TestD, Case 2—ghost fluid method, 100 points.
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FIG. 20. Test D, Case 2—ghost fluid method, 400 points.

5.4. Example 4

This problem was taken from [33]. Considerma domain with 100 grid points and the
interface located midway between the 50th and 51st grid points. There is a JWL ga:c
the left and water on the right with initial states af = 1630 kg/n¥, pr = 1000 kg/n3,
pL=7.81x 10° Pa,pr=1.0 x 10° Pa, andi. =ugr=0T.
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FIG. 21. Test A—2D calculation, diagonal cross-section.



480 FEDKIW ET AL.

den vel

1000 |-
200 |-
800+
700
600 -
S00
400
300
=200
100

x 10° press

(=3

Fas

sl

sl

al

al

2|

1} < 4

of QKR
<) 1 2 a 4 [ E] 2 3 4

FIG. 22. JWL gas on the left and water on the right.

Since the equation of state for water has pressure as a function of density only, one n
to be careful when choosing the isobaric fix variable. The most natural choice for wate
the internal energy. For simplicity, we do not use the isobaric fix technique for the JWL g
and we extend density directly into the ghost cells.

We ran the code to a final time of 0.0005 s and the results using our new scheme
shown in Fig. 22. The results compare well with the exact solution in [33].

5.5. Example 5

This problem was taken from [33]. Consider ari@omain with 500 grid points and
reflection boundary conditions applied to both sides of the domain. The interface is loce
midway between the 250th and 251st grid points, with a gamma lawga4,.25, on the
left and water on the right. The initial states are= 1 kg/n?, pgr = 1000 kg/n¥, p. = 1.0 x
10° Pa,pr = 1.0 x 10° Pa, andi. =ur=07. In addition, we have a shock in each fluid.
Grid points 1 to 48 have = 8.26605505 kg/rh, p=1.0 x 10’ Pa, andu = 294997131%.
Grid points 481 to 500 haye= 10041303 kg/n?, p=1.0x 10’ Pa, andi = —6.38135882.

Since the equation of state for water has pressure as a function of density only, one n
to be careful when choosing the isobaric fix variable. The most natural choice for wate
the internal energy. We use entropy as the isobaric fix variable in the gas.

We ran the code to a final time of 0.003 s and the results using our new scheme are st
in Fig. 23 where we plot log, p instead of the density, so that one may see the shock in tt
gas. In the figure, we use red for the gas and green for the water. In addition, note tha
entropy field in the water is not used, so we set it to zero for graphing purposes. The res
compare well with the solution computed in [33].

Note that the pressure evolution equation method in [18] has a difficult time dealing w
these sorts of contact discontinuities where the velocity and pressure are not both cons
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FIG. 23. Gamma law gas (red) and water (green).

FIG. 24. Gamma law gas (red) and water (green).
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5.6. Example 6

This problem was taken from [33]. Consider ani@omain with 400 grid points. A
reflection boundary condition is applied to the left hand side of the domain, while an o
flow boundary condition is applied to the right hand side of the domain. Water is locat
in the central part of the domain surrounded by a gamma lawygasl.3, on each side.
There are two interfaces, one between the 40th and 41st cell and one in between the ]
and 121st cell. The gas has initial valueget 35 kg/n?, p= 1.0 x 10’ Pa, andi = 5002,
while the water has initial values pf= 10041303 kg/nf, p=1.0x 10’ Pa, andi =5007.

This problem is computationally challenging so we modify our numerical method slight
by choosing the high order viscosity for the ENO-LLF scheme as the largest of the th
separate field viscosities as opposed to the usual field by field choice. In addition, we
use the second order accurate version of the spatial method in the water.

Since the equation of state for water has pressure as a function of density only, one n
to be careful when choosing the isobaric fix variable. The most natural choice for wate
the internal energy. We use entropy as the isobaric fix variable in the gas.

We ran the code to a final time of 0.007 s and the results using our new scheme are st
in Fig. 24 where we plot log, p instead of the density, so that one may see the shock in tt
gas. In the figure, we use red for the gas and green for the water. In addition, note tha
entropy field in the water is not used, so we set it to zero for graphing purposes. The res
compare well with the solution computed in [33].

Note that the pressure evolution equation method in [18] has a difficult time dealing w
these sorts of contact discontinuities where the velocity and pressure are not both cons

5.7. Example 7

We examine the convergence and conservation of a stable flow field with an interfe
The problem is linear advection of a helium bubble in air and the nondimensionalized inif
conditions are

(p=Lu=1lv=1p=L1y=14) ai (32)
(p=0138u=1v=1p=1y =167 helium (33)
¢ =—-02+4+/(x—0.252+ (y—0.252 level set (34)

whereg < 0 represents helium angl> 0 represents air. No reinitialization of the level set
function was done. For this advection problem our scheme achieves the exact state in ec
the fluid regions, and the only error incurred is from the advection of the level set functic
This may seem like a trivial example, but most standard conservative or pressure evolu
schemes would smear out the density and possibly create spurious pressure oscillatio
A series of experiments was carried out on the unit square to measure the converg
to the exact solution and to analyze how well the scheme conserves the mass of each’
Zero gradient boundary conditions were used for the conservative fluid variables, and lir
extrapolation at the boundaries was use@fdie used a centrally biased ENO scheme [29
applied in a central framework [23, 34] with third order TVD Runge—Kutta time integratic
and third order WENO for the advection ¢f{16]. We usedAt =0.1Ax and integrated to
t =0.5. We measured two discrete errors, namely the L1 error in the densityHEigldnd
the relative error in total mass of heliufg,e, att = 0.5. The errors and numerical rates of
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TABLE |
Numerical Accuracy for Helium Advection in Air

Ax=Ay E, R Ete R.
1/10 517 x 102 5.00x 10t
1/20 862 x 102 2.58 816 x 102 2.62
1/40 215x%x 103 2.00 203 x 102 2.01
1/80 539x 10 2.00 502 x 102 2.02

convergenceRR., are given in Table I. Clearly the errors in both the density field and in tot:
mass conservation converge at second order.

5.8. Example 8

In this example, we will illustrate the difficulty in computing shear waves with shoc
capturing schemes and demonstrate the potential benefits of our new method. A full ¢
putational analysis of these issues will be treated in a future paper on viscous flow.

Consider a insquare domainwith = 1.4, p = 1 kg/n?, andp, = 1x 10° Paeverywhere.
An interface is located at=0.5m with tangential velocities o6 = 3007 on the left and
v =200 on the right. In addition, we impose a normal velocityet 50 T directed to the
right. The flow is inviscid and a shear wave should be advected to the right with a perf
slip boundary condition. We use a coarse mesh of 20 grid points in each direction and
they= &mlg cross-section of this initial data in Fig. 25. A shock capturing scheme wi
smear out this shear wave creating the errors shown in Fig. 26 at 0.0005 s and Fig. -
0.005 s. Using the slip boundary condition in our new scheme results in an extremely st
solution as shown in Fig. 28 at 0.005 s.

den uvet

1.01 50.5
1.008 1 50.4
1.006} 1 so.af
1.004 1 s50.2
1.002} 1 s50.1 |
1P OO OO OO BOP OO OO OO OP
0.998 R 49.9 |
o.996} g as.8}
0.994 | 1 49.7
0.992 | b 49.6 +
0.99 .
(=] o.2 0.4 0.6 0.8 1 ao 50 o.2 0.4 0.6 o.8 1
vvel s press
1.01 x 10
FGoO0pPoO O OCOOCO OO E 1.008}
1.006 |
200 4
1.004 |-
100 J 1.0021
TPO OO OO OO OP
or 1 o.998 |
o.996}
—100}
0.994
—-200 cCooocoooood o.992r
o 0.2 0.4 0.6 0.8 1 0.990 o.2 o.4 0.6 o.8 1

FIG. 25. Shear wave—initial data.
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den uvet
1.02} 4 sel
o @ o © o
1.01 o A )
(=3 54 4
1poococoe @ Coocoe <
0.99r E + 4
52 .
o.98| E .
sopoocCcoo CcCooe
0.97 B
<
o.96} E as} ]
o.ost 1 <
a6} i
0.94 —
=1
o.93} - 1 aaf . p
o.92F 4
o o.2 0.4 0.6 o.8 1 (=] o.2 o.4 0.6 0.8 1
vvel x 10°% press
BOOP O OO D OO0 O -4 1.025 =1 ~
o
200 - 1.02F o < 4
100 < 1.015 Py 4
ol e g 1.01} i o 4
—100} 4 1.008| < q
o
[=3 P <
—200 |- COOODDODDOO® 1poocoe Cood
o 0.2 0.9 0.6 o.8 1 [=] o.2 0.4 0.6 o.8 1

FIG. 26. Shear wave—standard scheme.

5.9. Example 9

We examine a Mach 1.22 air shock collapse of a helium bubble. Experimental res
may be found in [14] and a numerical solution using adaptive mesh refinement (AM
may be found in [32]. The physical initial conditions for this problem are given in Fig. 2
where the upper and lower boundary conditions are a reflection for solid wall boundar
The left and right boundary conditions were zero gradient for the flow variables and line

den uvel
S1F
ey % $
P oo 6O o o
' e Ceo g so.sl =3 = o
< oo -
0.99 T o (=2
O.98 < 4 S50 4
o o
0.97 B
< ao.s5} P - 1
o
0.968 b -3
o
0.95 B - 4
49 < .
O0.94 o -
0.93 . 48.5 F P
=3 =]
o.92¢ 4
o o.2 o.4 0.6 0.8 1 o o.2 o.4 0.6 o.8 b
vvel! x 10°% pross
BOOP OO O OO OOODOOD o 4 1.015} 4
o
200} R 1.01} J
o @ P
100} =] 1 1.005% i <]
°o @ i <
<
o
o} E 1t e o < 1
=3
=3
—1o0or h o.995} 4
=3
_zo0} co4 o.oo} _
o 0.2 o.4 0.6 o.8 1 o o.2 o.4 0.6 o.8 1

FIG. 27. Shear wave—standard scheme.
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den uvel

1.01 50.5
1.008 | E s50.4¢
1.006} E s50.3|
1.004 } 4 so.2}
1.002} E s50.1}
1PO OO DO DD ODTTOODOOTOOOP S0P OO DO DO OO0 ODODOCOOOOOP
o.998} R as.9f
o.e996| E as 8|
0.994 | R 49.7|
o.e92| R as.e|
°-995 0.2 0.4 .6 o.8 1 4985 o.2 o.4 o.e 0.8 1
vvel - press
10.1 x 10
BOOPOCOOOOOCODOOOOO 4 10.08}
10.06}
200}
10.0a}
100 10.02}
TP O OO OCOCOCOOLCLOOTOOOO®
or E o.98|
o.96} 1
—100
o.94
—200 | coocoe¢ 9.92
2.9
<) o.2 o.4 0.6 0.8 1 o o.2 ©.4 o.e o.8 1

FIG. 28. Shear wave—ghost fluid method.

extrapolation foky. The nondimensionalized initial conditions are

(p=Lu=0,v=0,p=1y =149 pre-shocked air (35)
(p=13764u=—-.394v=0,p=15698 y = 1.4) post-shocked air  (36)
(p=0138u=0,v=0,p=1y =167  helium (37)

¢ =—-25++/(x—1792+y2 level set (38)

where¢ < 0 represents helium antl> 0 represents the air. The post-shock air state we
given forx > 225. No reinitialization of the level set function or isobaric fix was done. W
used a centrally biased ENO scheme [29] applied in a central framework [23, 34] with th
order TVD Runge—Kutta time integration and third order WENO for the advectiah of
[16]. Note that the computational domain was only the top half of the physical domain w
a reflection condition applied at= 0. A series of experiments was carried out at differen
resolutions Ax =2, 1, 0.5, 0.25) atCFL=0.8.
Figure 30 shows an idealized Schlieren image corresponding taglditer the air shock

encounters the helium bubbldx =0.25). The image was generated in the exact sam

(325mm,44.5mm)

Pre-shocked Air Post-shocked Air

(Omm,-44.5mm)

FIG. 29. Physical domain for Example 9.
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FIG. 30. Schlieren image for Example 9 &t 427 us (rotated 90clockwise).

manner as described in Subsection 3.3 of [32]. Also shown in Fig. 30 is a circle represen
the original helium-air interface to make the comparison easier with Fig. 9h of [32] al
Fig. 7h of [14]. The comparisons between the previous AMR solution and experime
are in good agreement for the general bubble shape and position. There are differenc
the details of the interface, which is to be expected since for this problem the interf:
is unstable, and without some regularization there will be no unique or resolved ans
to the Euler equations. For this problem the series of resolutidixs=(2, 1, 0.5, 0.25)
gave (2.5%, 0.78%, 0.42%, 0.43%) as the time averaged relative percent errors in he
mass, respectively. Clearly this error in conservation of mass is not very significant,
although it appears to be generally getting better with resolution, we make no conjec
that conservation will be achieved under resolution to unstable problems.

6. CONCLUSIONS

In this paper, we implemented a level set method for two phase compressible flow |
gives sharp resolution of contact discontinuities. A new Ghost Fluid Method was usec
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create a band of ghost cells that preserve the continuous pressure and velocity profile:
contact discontinuity, while removing the numerical dissipation associated with the disc
tinuous entropy field (and the tangential velocity in the case of a shear wave). The resul
numerical method produces sharp resolution of the Heaviside density and temperature
files allowing one to treat interfaces where one of the phases has a stiff equation of <
that could erroneously produce cavitation for smeared out density profiles.

A number of numerical examples were studied in both one and two spatial dimensic
Extensions to three dimensions are straightforward, but will be pursued elsewhere.
experienced a small increase in computational overhead associated with the nume
treatment of the scalar level set equation and the equations for reinitialization and gt
cell population. Theoretically, these algorithms can be performed on a lower dimensic
subset of the mesh, see, for example, [1] and the references therein. While our code
not use these fast methods for the level set equations, we did apply the ghost cells in a
band about the interface increasing the computational cost by only a few percent ov
standard one phase calculation in most cases.

APPENDIX A: LEVEL SET METHODS

In this section, we present some of the relevant ideas for discretization of the level
advection equation

¢t + Udy + vpy =0 (39)

and the reinitialization equation

b+ S6o) (/97 + 85 — 1) =0. (40)

We also discuss the advection equation for ghost cells population and the isobaric fi

where we have used = (ny, ny).

A.1. Hamilton—Jacobi Discretization

Following [26, 27], we need to find a left sided and right sided discretizatiopfarhich
we callg, andg;". The same procedure is appliedgpin the obvious fashion.

A.1.1. The 3rd Order ENO

We proceed along the lines of [30]. We will use polynomial interpolation to direthd
then differentiate to gey.

The zeroth order divided difference®?, and all higher ordeevendivided differences
of ¢ exist at the grid points and will have the subscripthe first order divided differences,
D!, 1, and all higher ordesdddivided differences op exist at the cell walls and will have
the subscript + 1.

Consider a specific grid poing. To find ¢y, setk =ip — 1. To find¢;, setk=io.
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Define

Q1(X) = (Dje; 1) (X = Xio)- (42)
If IDZ¢| <|DZ,,¢|, thenc= DZ¢ andk* =k — 1. Otherwisec = DZ, ;¢ andk* = k. Define
Q2(X) = (X — X)) (X — Xky1)- (43)

If |DR._1/,0] <D 1,20, thenc* = DE._; ,¢. Otherwisec* = D, ,¢. Define
Qa(X) = C"(X — X ) (X = Xie41) (X — X 4:2). (44)

And then(¢y);, is

D§+%¢ +¢(2(ip — k) — D)AX 4+ ¢c*(B(ig — k)% — 6(ig — k*) + 2)(AX)2.  (45)

A.1.2. The 5th Order WENO

We proceed along the lines of [17, 16]. Consider a specific grid pgint
To find ¢, set

Dip—2 — Pip—3 Pip—1 — Pip—2
= -, = 46
= AX v2 AX (46)
¢i0 - ¢i071 ¢I0+l ¢I0
= o Tl 47
v3 AX V= AX (“7)
_ Digr2 — Pig+1 (48)
AX
and to findg;, set
_ ¢io+3 - ¢i0+2 ’ Uy = ¢i0+2 - ¢io+l (49)
AX AX
¢Io+l ¢I0 vy = ¢i0 - ¢i0—1 (50)
AX AX
— ¢i071A_X¢i072 ) (51)
Next we define the smoothness

13 1
= " (v1 — 2v2 4+ v3)® + = (v1 — 4vy + 3v3)? (52)

12 4

13 1
= TZ(UZ — 2v3 4 va)? + Z(vz — vg)? (53)

13 1
= " (v3 — 24 + v5)%> + = (3v3 — dvg + vs)? (54)

12 4

and the weights
1 1 a

a = c (55)

Sl w = —
10(e + S)2 ! a+a+as
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6 1 a
=, Wy = ——n—— 56
27 10(c + 92 2T atatag (56)
3 1 as
= w3 = ——— 57
8= 101972 ST afaptag B0
to finally get
+ U1 71)2 111)3 —V2 5U3 V4 U3 5U4 Vg
= — 4= —— 4= —4+———1. (58
(@%)io w1<3 6+ 6>+w2<6+6+3 +ws 3+6 6 (58)
Note that we use = 1075.
A.2. Convection
In order to solve
¢t + Uy +vey =0 (59)

we look at the velocities. Ifij, > 0, then we useé; . If u;, <0, then we usey . If uj, =0,
then we do not need to choose either. The same considerations apgndiap, .

A.3. Reinitialization

d+ S (\/#3 + 5~ 1) =0 (60)

In order to solve

we can rewrite it as

S (o] X (o]
o + (M)m (M)m:s«m) (61)

9%+ Y ¢% + 9§

and consideB(¢,)¢x andS(¢,) ¢y evaluated aily to determine the upwind directions [31].

We use a madification of Godunov’s method [27].9f¢0)¢; > 0 and S(¢o)¢, >0,
then we usep, . If S(¢o)¢p; <0 andS(¢o)¢, <0, then we use;. If S(¢o)p; >0 and
S(¢o)px <0, then we usey =0. If S(¢o)¢; <0 andS(¢e)¢, > 0, we define

_ S(¢o) (19| — I )
o — dx
and ifs> 0, then we use@, . Otherwise we usg;’ .
The same procedure is repeated$0p,) ¢y and the appropriate values iy andey are
plugged into Eq. (60).
Note that we smear out the sign function and define

¢
V92 + (AX)?

S

(62)

S(¢o) = (63)
instead of the exact sign function.

We also use a limiter in the time evolution of the distance function to keep the interfe
from crossing grid points.
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A.4. Ghost Cells
In order to solve
It + Nyl +nyly =0 (64)

we use a first order ENO approximationltp and |, as outlined above fap. Note that
we use first order since theoretically this equation is solved to steady state.
We will also need to evaluate the unit normal

= (g, Ny) = < O Py > (65)
VR \Jer+ 4

atig, e.g., using central differencing. It is usuaIIy helpful to use a temporary variable,
when computing the normal. First copyinto b, relnltlallzeqb to produce an approximate
distance function, then compute the normals usingn this way one can get improved
values for the normal without losing accuracy in the original level set funatioNpte that
caution should be used to avoid division by zero whgg= ¢y, =0

In ny > 0, then we use, . If ny <0, then we useé,". If ny =0, then we do not need to
choose either. The same considerations apply toghgterm.

In order to solve

It —nylx —nyly =0 (66)

we use—n, instead ofn, and—ny instead ofny in the procedure above.

We use+N to update the ghost cells with> 0 and—N to update the ghost cells with
¢ <0, where we have chosen the convention that 0 belongs to the fluid witlp < 0.
To apply the isobaric fix, we allow a band of the real fluid cells near the interface to
populated along with the cells on the other side of the interface. In this case, wd\uge
update the cells witkh > —e and—N to update the cells with < +¢ wheree determines
the thickness of the band. For example, chaosel. 5AX.

A.5. Time Evolution

The advection equation for the level set function is updated together with the Eu
equations.

The reinitialization equation is usually solved in fictitious time after fatii complete
time stegfor the Euler equations. For example, aat = % and take 1@ -steps with a 3rd
order TVD Runge—Kutta method to reinitialize about 5 cells on each side of the interfe
to be approximately a distance function.

The advection equation for the population of ghost cells must be done aftesdastiep
of the time discretization for the Euler equations, in contrast to the reinitialization. F
example, the ghost cells must be populated after each Euler substep of a Runge-}
method, whereas the reinitialization is done after each full Runge—Kutta step. This upc
is also done in fictitious time. For example, get = £ and take about 20-steps with a
3rd order TVD Runge—Kutta method to populate a small band of ghost cells. We caut
the reader that numerical dissipation could affect this ghost cell population and that t
may need more than 20 steps on occasion.
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A.6. Boundaries

The following boundary condition keeps the characteristics flowing outward for the le\

set function. After updating the interior of the domain, we update the boundary points w

¢B = ¢_1+ S(Pp_1)|pp_1 — PB_2], (67)

where ¢g lies on the boundary andls_; and ¢g_, are the adjacent points in a given
coordinate direction.
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