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While Eulerian schemes work well for most gas flows, they have been shown to
admit nonphysical oscillations near some material interfaces. In contrast, Lagrangian
schemes work well at multimaterial interfaces, but suffer from their own difficulties
in problems with large deformations and vorticity characteristic of most gas flows.
We believe that the most robust schemes will combine the best properties of Eulerian
and Lagrangian schemes. In this paper, we propose a new numerical method for
treating interfaces in Eulerian schemes that maintains a Heaviside profile of the den-
sity with no numerical smearing along the lines of earlier work and most Lagrangian
schemes. We use a level set function to track the motion of a multimaterial interface in
an Eulerian framework. In addition, the use of ghost cells (actually ghost nodes in our
finite difference framework) and a new isobaric fix technique allows us to keep the
density profile from smearing out, while still keeping the scheme robust and easy to
program with simple extensions to multidimensions and multilevel time integration,
e.g., Runge–Kutta methods. In contrast, previous methods used ill-advised dimen-
sional splitting for multidimensional problems and suffered from great complexity
when used in conjunction with multilevel time integrators.c© 1999 Academic Press

1. INTRODUCTION

Eulerian schemes work well for most problems and can accurately and efficiently handle
large deformations characteristic of gases. However, they can admit nonphysical oscillations
near material interfaces due to the smeared out density profile and the radical change in
equation of state across a material interface. Lagrangian schemes work well on material
interfaces, since they do not smear out the density profile and it is clear which equation of
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state is valid at each point. Unfortunately, Lagrangian schemes have their own problems
when subjected to large deformations such as those characteristic of gas flow. For a good
summary of both Eulerian and Lagrangian schemes, see [3].

Our method consists of combining the robustness of an Eulerian scheme with a multima-
terial interface method characteristic of a Lagrangian scheme. We do this by tracking the
interface with a level set function [25, 31] which gives the exact subcell interface location.
At this interface, we solve an approximate Riemann problem similar to the methods in [11,
5, 4]. In [11, 5, 4] the authors use schemes that are intricate in one dimension and can
only be extended to multiple dimensions with dimensional splitting in time. In addition,
multilevel time integrators, such as the Runge–Kutta methods, are hard to implement for
these methods. In contrast, our method draws on ideas from [30] which enables us to treat
multidimensional calculations without time splitting and allows the easy and efficient im-
plementation of Runge–Kutta methods. This is done with an elegant use of ghost cells and
the application of a new isobaric fix technique [7].

We make note of an alternative method of solving interface problems with Eulerian
schemes. In [18, 15, 6] the authors allow the errors in density associated with a smeared out
material interface, while using special numerical techniques to reduce or remove the errors
in the pressure and velocity. While some of the preliminary results with a gamma law gas,
see e.g., [32] (computed with the method in [18]), are extremely promising, it is unclear that
it will always be possible to remedy the errors associated with a smeared out density profile.
In fact, the general pressure evolution equation [6] has a discontinuous coefficient with no
meaningful regularization for general equations of state. We have pushed this equation to its
limits in [22] and have been disappointed by its lack of robustness. In general, we advocate
schemes which do not smear out the density profile.

2. EQUATIONS

2.1. Euler Equations

The basic equations for two-dimensional compressible flow are the 2D Euler equations,
ρ

ρu
ρv

E


t

+


ρu

ρu2+ p
ρuv

(E + p)u


x

+


ρv

ρuv

ρv2+ p
(E + p)v
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y

= 0, (1)

wheret is time,x andy are the spatial dimensions,ρ is the density,u andv are the velocities,
E is the total energy per unit volume, andp is the pressure. The total energy is the sum of
the internal energy and the kinetic energy,

E = ρe+ ρ(u
2+ v2)

2
, (2)

wheree is the internal energy per unit mass. The one-dimensional Euler equations are
obtained by settingv= 0.

In general, the pressure can be written as a function of density and internal energy,
p= p(ρ, e), or as a function of density and temperature,p= p(ρ, T). In order to complete
the model, we need an expression for the internal energy per unit mass. Sincee= e(ρ, T)
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we write

de=
(
∂e

∂ρ

)
T

dρ +
(
∂e

∂T

)
ρ

dT (3)

which can be shown to be equivalent to

de=
(

p− T pT

ρ2

)
dρ + cv dT, (4)

wherecv is the specific heat at constant volume [2].
The sound speeds associated with the equations depend on the partial derivatives of the

pressure, eitherpρ and pe or pρ and pT , where the change of variables from density and
internal energy to density and temperature is governed by the relations

pρ → pρ −
(

p− T pT

cvρ2

)
pT (5)

pe→ pρ +
(

1

cv

)
pT (6)

and the sound speedc is given by

c =
√

pρ + ppe

ρ2
(7)

for the case wherep= p(ρ, e) and

c =
√

pρ + T(pT )2

cvρ2
(8)

for the case wherep= p(ρ, T).
The eigenvalues and eigenvectors for the Jacobian matrix ofF(U) are obtained by setting

A= 1 andB= 0 in the following formulas, while those for the Jacobian ofG(U)are obtained
with A= 0 andB= 1.

The eigenvalues are

λ1 = û− c, λ2 = λ3 = û, λ4 = û+ c, (9)

and the eigenvectors are

L1 =
(

b2

2
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2c
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2
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2
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L2 = (1− b2, b1u, b1v,−b1), (11)

L3 = (v̂, B,−A, 0), (12)
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R1 =


1

u− Ac
v − Bc
H − ûc

 , R2 =


1
u
v

H − 1
b1

 , (14)
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
0
B
−A
−v̂

 , R4 =


1

u+ Ac
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 , (15)

where

q2 = u2+ v2, û = Au+ Bv, v̂ = Av − Bu, (16)

0 = pe

ρ
, c =

√
pρ + 0p

ρ
, H = E + p

ρ
, (17)

b1 = 0

c2
, b2 = 1+ b1q

2− b1H. (18)

The eigensystem for the one-dimensional Euler equations is obtained by settingv= 0.

2.2. Level Set Equation

We use the level set equation

φt + uφx + vφy = 0 (19)

to keep track of the interface location as the zero level ofφ. In generalφ starts out as the
signed distance function, is advected by solving Eq. (19) using the methods in [12], and
then is reinitialized using

φt + S(φo)
(√

φ2
x + φ2

y − 1
)
= 0 (20)

to keepφ approximately equal to the distance function near the interface where we need
additional information. In this equation,S(φo) is the sign function ofφo with appropriate
numerical smearing. More details are given in the Appendix.

We note that our method allows us to solve Eq. (19) independently of the Euler equations.
That is, Eq. (19) can be solved directly using the method in [12], and the eigensystem for
the Euler equations does not depend onφ, since we will be solving only one phase problems
with any given eigensystem (see the later sections). For details on the level set function see
[25, 31].

2.3. Equations of State

We will use the following equations of state in our numerical examples.

2.3.1. Gamma Law Gas

For an ideal gasp= ρRT where R= Ru/M is the specific gas constant, withRu≈
8.31451 J

mol K the universal gas constant andM the molecular weight of the gas. Also valid
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for an ideal gas iscp− cv = Rwherecp is the specific heat at constant pressure. Additionally,
gamma as the ratio of specific heatsγ = cp/cv [2].

For an ideal gas, Eq. (4) becomes

de= cv dT (21)

and assuming thatcv does not depend on temperature (calorically perfect gas), we integrate
to obtain

e= cvT, (22)

where we have sete to be zero at 0 K. Note thate is not uniquely determined, and we could
choose any value fore at 0 K (although one needs to use caution when dealing with more
than one material to be sure that integration constants are consistent with the heat release
in any chemical reactions that occur).

Note that we may write

p = ρRT = R

cv
ρe= (γ − 1)ρe (23)

for use in the eigensystem.

2.3.2. Tait Equation of State for Water

We use a stiff equation of state for the water,

p = B

(
ρ

ρo

)γ
− B+ A, (24)

whereγ = 7.15, A= 105 Pa, B= 3.31× 108 Pa, andρo= 1,000 kg/m3. In addition, we
define

e= Bργ−1

(γ − 1)ργo
+ B− A

ρ
(25)

at the internal energy per unit mass [33].
Note that this equation of state haspe= 0 which causes a division by zero in the fourth

component ofR2. This can be avoided with simple rescaling ofL2 andR2 by dividing and
multiplying byb1, respectively. The new eigenvectors become

L2 = (−q2+ H, u, v,−1) (26)

and

R2 =


b1

b1u

b1v

b1H − 1

 . (27)

In addition to model cavitation, the minimum pressure is set to bepmin= 22.0276 Pa [33].
That is, the equation of state becomesp= pmin for all densities that would admit pressures
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lower thanpmin. Thus, all partial derivatives of pressure are identically zero for densities
below

ρmin = ρo

(
pmin− A+ B

B

) 1
γ

(28)

and this causes problems in the eigensystem since the sound speed is now zero. To remedy
this problem we use a central scheme [23] whenρ <ρmin.

2.3.3. JWL Equation of State for Explosive Products

We use the following JWL (Jones–Wilkins–Lee) equation of state for explosive products,

p = A

(
1− ωρ

R1ρo

)
exp

(
−R1ρo

ρ

)
+ B

(
1− ωρ

R2ρo

)
exp

(
−R2ρo

ρ

)
+ωρe, (29)

whereA= 5.484×1011 Pa,B= 9.375×109 Pa,R1= 4.94, R2= 1.21, ω= 0.28, andρo=
1,630 kg/m3 [33].

3. NUMERICAL METHOD

We use the level set function to keep track of the interface. The zero level marks the loca-
tion of the interface, while the positive values correspond to one fluid and the negative values
correspond to the other. Each fluid satisfies the Euler equations described in the last section
with different equations of state on each side. Based on the work in [12], the discretization
of the level set function can be done independent of the two sets of Euler equations.

Besides discretizing Eq. (19) we need to discretize two sets of Euler equations. This will
be done with the help of ghost cells. We will describe the scheme with an excessive use of
ghost cells for the sake of clarity and comment on efficiency later.

Given a level set function, it defines two separate domains for the two separate fluids,
i.e., each point corresponds to one fluid or the other. Our goal is to define a ghost cell at
every point in the computational domain. In this way, each grid point will contain the mass,
momentum, and energy for the real fluid that exists at that point (according to the sign of
the level set function) and a ghost mass, momentum, and energy for the other fluid that
does not really exist at the point (it is on the other side of the interface). Once the ghost
cells are defined, we can use standard methods, e.g., see [30], to update the Euler equations
at every grid point for both fluids. Then we advance the level set function to the next time
step and use this to determine which of the two multidimensional spatial discretizations to
use at a given grid point. This makes multidimensional implementation trivial, since it is
done in the usual straightforward way, i.e., in the usual way for a single phase fluid with no
special concern for the interface, e.g., see [30]. In contrast, [11, 5, 4] all need ill-advised
dimensional splitting for multidimensional problems.

Consider a general time integrator for the Euler equations. In general, we construct right
hand sides of the ordinary differential equation for both fluids (based on the methods in
[30]), then we advance the level set to the next time level and pick one of the two right hand
sides to use for the Euler equations based on the sign of the level set function. This can
be done for every step and every combination of steps in a multistep method. Since both
fluids are solved for at every grid point, we just choose the appropriate fluid based on the
sign of the level set function. This is incredibly simple to program and apply as opposed
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to complexity and decision making involved with the use of multilevel time integrators in
[11, 5, 4].

To summarize, the method described here is trivial to implement. Use ghost cells to
define each fluid at every point in the computational domain. Update each fluid separately
in multidimensional space for one time step or one substep of a multistep time integrator
with standard methods. Then update the level set function independently using the real fluid
velocities and the sign of the level set function to decide which of the two answers is the valid
answer at each grid point. Keep the valid answer and discard the other so that only one fluid
is defined at each grid point. Note that multistep time integrators will also require one to
save the right hand side of the ordinary differential equation for both fluids for possible use
at a later time level. Then define new ghost cells and start over. In this we have regulated
all the difficult decision making about special cases on interface crossing, cut cells, etc., to
the subroutine that decides how to define the ghost cells. In fact, the entire method relies
on the ability to produce ghost cells that satisfy the appropriate boundary conditions for
the Euler equations. In this way, one can compute solutions to multiphase flow problems
with one’s own favorite single phase solver by adding a new routine to define and deal with
ghost cells. We chose to use the ENO scheme and TVD Runge–Kutta methods from [30].

Last, we note that only a band of 3 to 5 ghost cells on each side of the interface is ac-
tually needed by the computational method depending on the stencil and movement of the
interface. One can optimize the code accordingly.

4. DEFINING THE GHOST CELLS

Since a standard one phase solver will be used, the ghost nodes are the key to the numerical
method. We have discovered that a straightforward boundary condition capturing approach
yields surprisingly good results as is demonstrated by our numerical examples.

4.1. One Dimension

To define the ghost nodes in one spatial dimension, three quantities must be defined in
the ghost region. Then the equation of state along with the appropriate algebraic relations
can be used to get the mass, momentum, and energy.

We choose pressure and velocity as two of our three variables for physical reasons. In
many problems, pressure and velocity are continuous across the interface and we can set
the pressure and velocity of the ghost fluid identically equal to the pressure and velocity
of the real fluid at each point. That is, node by node we can copy the real fluid values of
pressure and velocity into the ghost fluid values of pressure and velocity. In this way we
capture the interface boundary conditions for the pressure and velocity without explicitly
identifying the interface location. Some modification of this procedure is necessary when
the pressure and velocity are discontinuous as will be discussed in a future paper.

Once the pressure and velocity have been defined at each ghost node, one more quantity
needs to be defined. In [7], it was shown that one degree of freedom exists at a material
interface or contact discontinuity. This degree of freedom corresponds to the advection of
entropy in the linearly degenerate field. Note that entropy is generally discontinuous at a
contact discontinuity. When one applies a standard finite difference scheme to a discontin-
uous function, large errors result since the truncation error is not small. Shock capturing
methods have traditionally avoided the large dispersive errors with a myriad of special
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techniques while still allowing the large dissipative errors that are usually harmless in a one
phase computation. However, these large dissipative errors can be the source of spurious
oscillations in a two phase computation.

We eliminate the dissipative errors in the numerical method by using one sided extrapola-
tion of the entropy. Defining the ghost cells with one sided extrapolation of the entropy will
create a continuous entropy profile and remove the large errors due to numerical dissipation.
Note that the discontinuous nature of the entropy profile dictates that one sided extrapo-
lation will capture the appropriate boundary condition. As discussed in [7], there is a true
degree of freedom at a contact discontinuity and one has some choice as to which variable
to extrapolate, although one needs to use caution since there will be different degrees of
“overheating” errors depending on the variable chosen. See [7] for details.

At this point, we describe the method in detail. Suppose that the zero level of the level
set function lies between nodesi andi +1, i.e., the level set function changes sign between
these nodes. Then fluid 1 is defined at nodei and to the left of nodei , while fluid 2 is
defined at nodei + 1 and to the right of nodei + 1. In order to update fluid 1, we need
to define ghost fluid values of fluid 1 at nodes to the right and including nodei + 1. For
each of these nodes, we define the ghost fluid value by combining fluid 2’s pressure and
velocity at each node with the entropy of fluid 1 from nodei . This is constant extrapolation
of entropy which is actually preferred over high order extrapolation since our interface will
behave in a fashion similar to the piston in [7] suffering from “overheating” errors. In fact
we always use constant extrapolation of entropy to minimize the “overheating” errors. See
Fig. 1 for a schematic outlining the details of this process for the fluid on the left. Likewise,
we create a ghost fluid for fluid 2 in the region to the left and including nodei . This is done
by combining fluid 1’s pressure and velocity at each node with the entropy of fluid 2 from
nodei + 1.

As discussed in [7], the isobaric fix technique can be used to reduce the “overheating”
errors. This technique allows the entropy in real fluid values to change. In order to apply our
isobaric fix technique, we change the entropy at nodei to be equal to the entropy at node
i − 1 without modifying the values of the pressure and velocity at nodei . Likewise, we

FIG. 1. Ghost fluid method—no isobaric fix.
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FIG. 2. Ghost fluid method—isobaric fix.

change the entropy at nodei +1 to be equal to the entropy at nodei +2. This completes the
isobaric fix, and then the ghost cells are defined as outlined above using these new values
for the entropy. See Fig. 2 for a schematic outlining the details of this process for the fluid
on the left.

Note that the isobaric fix can be combined with the ghost node population in a simple
way. For the nodes to the right and including nodei , combine the pressure and velocity of
each node with the entropy from nodei − 1. This defines fluid 1 to the right and including
nodei . For the nodes to the left and including nodei +1, combine the pressure and velocity
of each node with the entropy of nodei + 2. This defines fluid 2 to the left and including
nodei + 1. This method is especially effective in multidimensional implementation.

An important aspect of this method is its simplicity. We do not need to solve a Riemann
problem, consider the Rankine–Hugoniot jump conditions, or solve an initial boundary
value problem at the interface. We capture the appropriate interface conditions by defining
a fluid that has the pressure and velocity of the real fluid at each point, but the entropy of
some other fluid. Consider the case of air and water. In order to solve for the air, we replace
the water withghost air that acts like the water in every way (pressure and velocity) but
appears to be air (entropy). In order to solve for the water, we replace the air withghost
water that acts like the air in every way (pressure and velocity) but appears to be water
(entropy). Since the ghost fluids behave in a fashion consistent with the real fluids that they
are replacing, the appropriate boundary conditions are captured. Since the ghost fluids have
the same entropy as the real fluid that is not replaced, we are solving a one phase problem.
We name this method the “Ghost Fluid Method,” not to be confused with ghost cells or
ghost nodes which are used in the implementation of the method and have been in use for
quite some time.

4.2. Justification

Here we provide a justification of why our method works. Consider the case of a solid
wall boundary, where a reflection condition is used for the ghost cells. One can think of
this as prescribing waves in the ghost region which are identical to those in the real fluid
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so that the real fluid does not escape when it interacts with the boundary. Instead, it sees
its reflected twin and behaves as if the boundary were impenetrable [34]. Now consider an
interface anywhere in a fluid. We want the fluid on one side of the interface to behave in
the appropriate way when we add our ghost cells, and thus the easiest thing to do is to let
all the ghost values be equal to the real fluid values at that point. In this way, the ghost cells
do nothing and the scheme is just the standard Eulerian scheme.

Unfortunately this standard Eulerian scheme does not behave well in certain situations,
just as the piston does not behave well in [7] due to “overheating.” This implies that a
simple modification of the ghost cells is needed similar to [7]. We noticed in [7] that the
only modification necessary to cure “overheating” was an isobaric fix. If one thinks of the
smearing out of the density profile in a contact discontinuity as a phenomena similar to
“overheating” then it becomes obvious that the isobaric fix technique will work well here.
Thus, the only modification in the ghost cells is to use the isobaric fix technique, while
leaving the pressure and velocity unchanged.

4.3. Multidimensions

The above procedure is for one dimensional problems and as trivial as it seems, it does
the job. For multidimensional problems, the ghost cells become more involved. We have
more than one velocity to deal with, and we need to make some choices for the direction of
extrapolation. In multidimensions, we treat the pressure and the three dimensional velocity
field in the usual way, just defining the ghost values equal to the real fluids values. In order
to finish the ghost cell procedure, we need to apply the isobaric fix technique to all the cells
bordering the interface, and we need to extend the isobaric fix variable into the ghost region
in a fashion that resembles the constant extrapolation done in the one dimensional case.

A natural way applying the isobaric fix technique exists because of the level set formu-
lation. Using the level set functon, we can define the unit normal at every grid point as

N = ∇φ|∇φ| (30)

and then solve a partial differential equation for constant extrapolation in the normal direc-
tion. This equation is

It ± N ·∇I = 0, (31)

whereI is the isobaric fix variable, e.g., the entropy. Note that the normal,N, always points
from the negative fluid into the positive fluid. We use the+ sign in Eq. (31) to populate
a ghost fluid in the region whereφ >0 with the values ofI from the region whereφ <0,
while keeping the real fluid values ofI fixed in the region whereφ <0. Likewise, we use
the− sign in Eq. (31) to populate a ghost fluid in the region whereφ <0 with the values of
I from the region whereφ >0, while keeping the real fluid values ofI fixed in the region
whereφ >0. This equation only needs to be solved for a few time steps to populate a thin
band of ghost cells needed for the numerical method. Once the ghost cells are populated
we can reassemble the conserved variables.

Note that the above procedure does not apply an isobaric fix to the cells in the real fluid
which border the interface. In order to apply the isobaric fix, we keep the real fluid values
of I fixed in the region whereφ <−ε when using the+ sign in Eq. (31), and we keep the
real fluid values ofI fixed in the region whereφ >ε when using the− sign in Eq. (31).
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Sinceφ is an approximate distance function, we chooseε to be the thickness of the band in
which we wish to apply the isobaric fix. We useε= 1.51x.

4.4. Boundary Conditions

In some multimaterial problems, large jumps in tangential velocity exist at the interface
similar to the jumps in density and equation of state that we remedy in this paper. Most
schemes will smear out this jump in tangential velocity due to numerical dissipation. An
extension of our method allows one to avoid this smearing.

We use the interface normal,N, to separate the three component velocity field into a
tangential and a normal component. The normal component is treated in the same fashion
as the velocity in one dimension, i.e., we copy the normal velocity directly into the ghost
cells with no change. The tangential velocity is handled in the same way as the isobaric fix
variable, i.e., the goal is to extrapolate it or extend it as a constant in the normal direction. In
two dimensions, a tangent vector must be chosen consistently in one direction or the other.
In three dimensions, one has a difficult time choosing a consistent two dimensional basis for
the tangent plane. We remove the difficulty in extension to higher dimensions by applying
a basis free projection method similar to the CPM (complementary projection method) [9].

We define the normal at each point by Eq. (30) and the velocity asV=〈u, v, w〉. Once
there are defined, we solve the propagation Eq. (31) whereI is now a column vector of
length four which contains the three dimensional velocity field and the isobaric fix variable.
Then at every cell in the ghost region we have two separate velocity fields, one from the
real fluid and one from the ghost fluid. Then for each velocity field, the normal component
of velocity, VN =V · N, is put into a three component vector,VNN, and then we use a
complementary projection idea to define the two dimensional velocity field in the tangent
plane by another three component vector,V−VNN. Then we take the normal component of
velocity,VNN, from the real fluid and the tangential component of velocity,V−VNN, from
the ghost fluid and add them back together to get our new velocity to occupy the ghost cell.

We present a simple model to illustrate how the method works. Consider a line in two
dimensions or a plane in three dimensions which defines a material interface. Assume that the
normal component of velocity is constant across the interface, while the tangential velocity
is constant on each side of the interface but jumps across the interface. Consider populating
one of the ghost regions with the velocity from the other side of the interface. Since the entire
velocity field on one side of the interface is a constant, we are just advecting that constant
value into the ghost region. Then we split the velocity field into a normal and tangential
component for both the ghost cells and the real fluid. We keep the tangential component
from the ghost fluid and the normal component from the real fluid. Since the real fluid
has the same normal velocity on both sides of the interface, our procedure is equivalent to
just keeping both components of the ghost cell velocity field. This is equivalent to using
a constant velocity field, and our method has no knowledge of a jump in velocity at the
interface. This allows our method to completely avoid smearing and leads to exact modeling
of planar shear waves.

Shear waves may or may not be stable [24]. For example, shear waves are stable in
high Mach number flows and when materials have strength (such as steel). Besides the
obvious smearing errors, standard schemes may suffer other problems due to their inability
to correctly model these shear waves. For example, a shear wave moving across the grid
will suffer from a pressure overshoot, while our scheme does not have this problem. In
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addition, there are many large forces that may be incorrectly excited in material models due
to erroneous smeared out velocity profiles. For example, consider two pieces of steel slowly
sliding past each other at room temperature. The velocity profile will smear, inducing a
continuous, non-constant velocity profile in each piece of steel. This erroneous non-constant
velocity profile will induce large non-physical resistant forces from a continuum model.

In many cases a jump in tangential velocity is not stable and will lead to a Kelvin–
Helmholtz instability. This instability is not well posed for the Euler equations and only
becomes well posed when viscosity (or some other regularization such as surface tension)
is added, e.g., Navier–Stokes flow.

4.5. A Note on Conservation and Convergence

Here, we briefly discuss the issues of conservation and convergence of the numerical
algorithm. The method described in this paper breaks the computational domain into two
separate fluids. Within each fluid a standard conservative flux differencing scheme is used.
At the interface between the two fluids, there is formally a lack of discrete conservation on
a set of measure zero. Fluxes that exist between two different fluids are not unique. Since
the pressure and normal velocity in each fluid are the same, these fluxes do have a unique
pressure and normal velocity. However, they differ in their values of entropy and tangential
velocities. We note that entropy and tangential velocities move with the speed of the fluid,
so they do not cross the interface. In addition, there will be a lack of conservation due to the
advection of the level set function,φ, similar to the area loss problem seen in incompressible
flow calculations [31].

Since the scheme is formally non-conservative at the interface, we expect our scheme to
behave like a fully conservative scheme with anO(1xn) source term acting over the material
interface. Heren is related to the order at which we are specifying the ghost node states
and the order in which we implement the level set method. If the interface length,L(t), is
independent of resolution, then the overall lack of conservation will be ofO(1xn

∫ t
0 L(t)dt).

Clearly if n> 0, one will achieve conservation. See Subsection 5.7 for an example where it
appears thatn= 2. Since in this case, conservation is achieved under resolution, and since
our discretization is numerically consistent with the Euler equations, we expect to also get
convergence to the proper weak solution. Again this is seen in Subsection 5.7.

In general, we expect that for stable interface flows, the above arguments will hold, and
the algorithm should achieve both convergence and conservation under mesh refinement.
Unfortunately, the inviscid Euler equations will generally be unstable at material interfaces
due to either Kelvin–Helmholtz [13] or Richtmyer–Meshkov [28] types of instabilities.
In these cases, the growth rate of an infinitesimal disturbance is usually proportional to
the wavenumber of the disturbance [24] andL(t) is resolution dependent. Since under
refinement finer scales are introduced, it is likely thatL(t)∝ 1/1xm. Here, it is most likely
that m> 0, and the length of the interface will become larger under refinement. In this
case the error in conservation would be ofO(1xn−m

∫ t
0 L∗(t)dt), whereL∗ is the length

of the interface at a particular resolution (i.e., fixed). The fact that the interface may be
growing is brought outside the integral and is grouped withn. We expect conservation
under mesh refinement whenn>m, and expect to lose conservation whenn<m. Note that
it is very difficult in general to determine bothn andm just given some initial/boundary
value problem. It may be possible that for a physically unstable problem thatn=m, in which
case under refinement one may observe a fixed (and possibly small) error in conservation.
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The example in Subsection 5.8 may be of this type, but it is probably best to simply monitor
the error in conservation for each problem and to attempt to determinen−m numerically.

It should be noted that many “fully conservative” schemes may conserve overall mass,
but may not conserve mass of each constituent [25]. In addition, problems where the Euler
equations have instabilities at all wavelengths will never be a resolved even with a perfectly
conservative scheme. For the method described in this paper, conservation is achieved under
resolution for problems that have a resolvable solution.

5. EXAMPLES

Unless otherwise noted the calculations are done with 3rd order ENO-LLF (essentially
non-oscillatory–local Lax–Friedrichs) and 3rd order TVD RK (total variation diminishing
Runge–Kutta) [30], except where the water cavitates where the 3rd order central scheme
[23] is used for the spatial discretization.

5.1. Example 1

In this first example, we explore a simple one phase problem where an Eulerian scheme
works well with no oscillations. We will compare our scheme to the standard Eulerian
scheme.

This problem was taken from [33]. Consider a gamma law gas withγ = 1.4 on a 4m do-
main with 100 grid points. The interface is located midway between the 50th and 51st grid
points with left and right states defined asρL = 2 kg/m3, ρR= 1 kg/m3, pL = 9.8× 105 Pa,
pR= 2.45× 105 Pa, anduL = uR= 0 m

s . We ran the code to a final time of 0.0022 s.
The results in Fig. 3 were obtained with the standard scheme while the results in Fig. 4

were obtained with the use of the new ghost cell technique where we choose the isobaric
fix variable to be entropy for extrapolation, but do not use the isobaric fix itself. Notice

FIG. 3. Standard scheme—100 points.
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FIG. 4. Ghost fluid method—without isobaric the fix, 100 points.

that the standard scheme produces a smeared out density and entropy profile as shown in
Fig. 3. In Fig. 4, this smearing has been alleviated to a large degree since the numerical
method no longer enforces continuity of the discontinuous entropy and density profiles, but
instead uses our new Ghost Fluid Method. However, there are still some small errors in
these variables near the interface due to slight overheating near the contact discontinuity
which can be improved with an isobaric fix technique as discussed in [7]. In Fig. 5, we add

FIG. 5. Ghost fluid method—with the isobaric fix, 100 points.
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the constant entropy isobaric fix to clean up the overheating. It should be noted that front
tracking schemes can completely eliminate numercal dissipation and overheating errors at
an interface as long as the interface and all discontinuities that intersect it (e.g., shocks) are
tracked. All three sets of results are plotted on top of the exact solution.

Note that we still capture the shock and still generate the large dissipative errors charac-
teristic of shock capturing schemes. However, our contact discontinuity no longer suffers
from this dilemma.

5.2. Example 2

In this example we compute solutions to Test A, Test B, Test C, and the two cases of
Test D from [18] where we have redimensionalized the problems. Note that all of these
examples have solutions where thepressure is constantacross the contact discontinuity.
Because of this, the pressure evolution equation gives good results which are also shown in
[18], although there are large smearing errors due to numerical dissipation.

5.2.1. Test A

For Test A we use a 1m domain with 100 grid points. The interface is located midway
between the 50th and 51st grid points with left and right states defined asγL = 1.4, γR= 1.2,
ρL = 1 kg/m3, ρR= 0.125 kg/m3, pL = 1× 105 Pa,pR= 1× 104 Pa, anduL = uR= 0 m

s .
We ran the code to a final time of 0.0007 s and the results with the standard scheme from
[25] are shown in Fig. 6, while the results using our new scheme with entropy as the isobaric
fix variable are shown in Fig. 7. Both sets of results are plotted on top of the exact solution.

Note that the contact discontinuity is shifted one grid point to the left, since we estimate
its speed with the local fluid velocity when advecting the level set function. During wave

FIG. 6. Test A—standard scheme, 100 points.
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FIG. 7. Test A—ghost fluid method, 100 points.

interactions, the actual velocity of a contact discontinuity can vary slightly from the local
fluid velocity. We have performed a grid refinement analysis and the contact discontinuity
seems to be off by one grid cell for all levels of grid refinement yielding first order con-
vergence in location as expected for a discontinuity where exact conservation is relaxed
slightly. A more resolved solution with 400 grid points is shown in Fig. 8.

FIG. 8. Test A—ghost fluid method, 400 points.
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FIG. 9. Test B—standard scheme, 100 points.

5.2.2. Test B

For Test B we use a 1m domain with 100 grid points. A right going shock is located
midway between the 5th and 6th grid points and an interface is located midway between
the 50th and 51st grid points. The left, middle, and right states are defined asγL = 1.4,
γM = 1.4, γR= 1.67, ρL = 1.3333 kg/m3, ρM = 1 kg/m3, ρR= 0.1379 kg/m3, pL = 1.5×
105 Pa,pM = 1× 105 Pa,pR= 1× 105 Pa,uL = 0.3535

√
105 m

s , anduM = uR= 0 m
s . We

ran the code to a final time of 0.0012 s and the results with the standard scheme from [25]
are shown in Fig. 9, while the results using our new scheme with entropy as the isobaric fix
variable are shown in Fig. 10. Both sets of results are plotted on top of the exact solution.

In this case, the contact discontinuity is located in the correct cell. Note that the weak
rarefaction wave (located to the left) and the weak shock wave (located to the right) both
suffer from numerical dissipation at this level of resolution, independent of the sharp contact
discontinuity. A more resolved solution with 400 grid points is shown in Fig. 11.

5.2.3. Test D, Case 1

This is similar to Test B, except that we increase the strength of the shock withρL =
4.3333 kg/m3, pL = 1.5× 106 Pa, anduL = 3.2817

√
105 m

s . We ran the code to a final time
of 0.0005 s and the results with the standard scheme from [25] are shown in Fig. 12, while
the results using our new scheme with entropy as the isobaric fix variable are shown in
Fig. 13. Both sets of results are plotted on top of the exact solution.

In this case, the contact discontinuity is located in the correct cell. Note that the glitch
nearx= 0.2m is due to the capturing of perfect shock initial data by a shock capturing
scheme. This is more pronounced in this example, since the shock wave is quite strong.
If one starts with a smoothed out shock profile, this glitch is no longer present. A more
resolved solution with 400 grid points is shown in Fig. 14.
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FIG. 10. Test B—ghost fluid method, 100 points.

5.2.4. Test C

This is similar to Test B, except that we change the fluid on the right toγR= 1.249, ρR=
3.1538 kg/m3, pR= 1× 105 Pa, anduR= 0 m

s . We ran the code to a final time of 0.0017 s
and the results with the standard scheme from [25] are shown in Fig. 15, while the results
using our new scheme with entropy as the isobaric fix variable are shown in Fig. 16. Both
sets of results are plotted on top of the exact solution.

FIG. 11. Test B—ghost fluid method, 400 points.
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FIG. 12. Test D, Case 1—standard scheme, 100 points.

In this case the contact discontinuity is located in the correct cell, although the shock
wave located to the left is shifted two grid points to the right. Once again, these errors are
consistent under grid refinement yielding first order accuracy in location. In addition, note
that these errors do not increase in time, since they are the result of estimating the velocity
of the contact discontinuity by the local fluid velocity during wave interactions. A more
resolved solution with 400 grid points is shown in Fig. 17.

FIG. 13. Test D, Case 1—ghost fluid method, 100 points.
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FIG. 14. Test D, Case 1—ghost fluid method, 400 points.

5.2.5. Test D, Case 2

This is similar to Test C, except that we increase the strength of the shock withρL =
4.3333 kg/m3, ρL = 1.5× 106 Pa, anduL = 3.2817

√
105 m

s . We ran the code to a final time
of 0.0007 s and the results with the standard scheme from [25] are shown in Fig. 18, while
the results using our new scheme with entropy as the isobaric fix variable are shown in
Fig. 19. Both sets of results are plotted on top of the exact solution.

FIG. 15. Test C—standard scheme, 100 points.
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FIG. 16. Test C—ghost fluid method, 100 points.

In this case the contact discontinuity is located in the correct cell, although the shock
wave located to the left is shifted two grid points to the right and the shock wave located
to the right is shifted one grid point to the right. Note that the glitches nearx= 0.3m and
x= 0.7m are due to the capturing of perfect shock initial data by a shock capturing scheme.
If one starts with a smoothed out shock profile, these glitches are no longer present. A more
resolved solution with 400 grid points is shown in Fig. 20.

FIG. 17. Test C—ghost fluid method, 400 points.
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FIG. 18. Test D, Case 2—standard scheme, 100 points.

5.3. Example 3

We take the initial data for the shock tube problem from Test A in [18] as in Example 2.
This time we compute in two spatial dimensions on a 200 by 200 grid with the shock tube
aligned in the diagonal direction. In Fig. 21 we show output from the off-diagonal direction.
Note that we ran the code for

√
2 times longer in order to get a good comparison with

Test A in Example 2. The results are plotted on top of the exact solution.

FIG. 19. Test D, Case 2—ghost fluid method, 100 points.
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FIG. 20. Test D, Case 2—ghost fluid method, 400 points.

5.4. Example 4

This problem was taken from [33]. Consider a 4m domain with 100 grid points and the
interface located midway between the 50th and 51st grid points. There is a JWL gas on
the left and water on the right with initial states ofρL = 1630 kg/m3, ρR= 1000 kg/m3,
pL = 7.81× 109 Pa,pR= 1.0× 105 Pa, anduL = uR= 0 m

s .

FIG. 21. Test A—2D calculation, diagonal cross-section.
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FIG. 22. JWL gas on the left and water on the right.

Since the equation of state for water has pressure as a function of density only, one needs
to be careful when choosing the isobaric fix variable. The most natural choice for water is
the internal energy. For simplicity, we do not use the isobaric fix technique for the JWL gas,
and we extend density directly into the ghost cells.

We ran the code to a final time of 0.0005 s and the results using our new scheme are
shown in Fig. 22. The results compare well with the exact solution in [33].

5.5. Example 5

This problem was taken from [33]. Consider a 10m domain with 500 grid points and
reflection boundary conditions applied to both sides of the domain. The interface is located
midway between the 250th and 251st grid points, with a gamma law gas,γ = 1.25, on the
left and water on the right. The initial states areρL = 1 kg/m3,ρR= 1000 kg/m3, pL = 1.0×
105 Pa,pR= 1.0× 105 Pa, anduL = uR= 0 m

s . In addition, we have a shock in each fluid.
Grid points 1 to 48 haveρ= 8.26605505 kg/m3, p= 1.0× 107 Pa, andu= 2949.97131m

s .
Grid points 481 to 500 haveρ= 1004.1303 kg/m3, p= 1.0×107 Pa, andu=−6.3813588m

s .
Since the equation of state for water has pressure as a function of density only, one needs

to be careful when choosing the isobaric fix variable. The most natural choice for water is
the internal energy. We use entropy as the isobaric fix variable in the gas.

We ran the code to a final time of 0.003 s and the results using our new scheme are shown
in Fig. 23 where we plot log10ρ instead of the density, so that one may see the shock in the
gas. In the figure, we use red for the gas and green for the water. In addition, note that the
entropy field in the water is not used, so we set it to zero for graphing purposes. The results
compare well with the solution computed in [33].

Note that the pressure evolution equation method in [18] has a difficult time dealing with
these sorts of contact discontinuities where the velocity and pressure are not both constant.
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FIG. 23. Gamma law gas (red) and water (green).

FIG. 24. Gamma law gas (red) and water (green).
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5.6. Example 6

This problem was taken from [33]. Consider a 10m domain with 400 grid points. A
reflection boundary condition is applied to the left hand side of the domain, while an out-
flow boundary condition is applied to the right hand side of the domain. Water is located
in the central part of the domain surrounded by a gamma law gas,γ = 1.3, on each side.
There are two interfaces, one between the 40th and 41st cell and one in between the 120th
and 121st cell. The gas has initial values ofρ= 35 kg/m3, p= 1.0×107 Pa, andu= 500m

s ,
while the water has initial values ofρ= 1004.1303 kg/m3, p= 1.0×107 Pa, andu= 500m

s .
This problem is computationally challenging so we modify our numerical method slightly

by choosing the high order viscosity for the ENO-LLF scheme as the largest of the three
separate field viscosities as opposed to the usual field by field choice. In addition, we only
use the second order accurate version of the spatial method in the water.

Since the equation of state for water has pressure as a function of density only, one needs
to be careful when choosing the isobaric fix variable. The most natural choice for water is
the internal energy. We use entropy as the isobaric fix variable in the gas.

We ran the code to a final time of 0.007 s and the results using our new scheme are shown
in Fig. 24 where we plot log10ρ instead of the density, so that one may see the shock in the
gas. In the figure, we use red for the gas and green for the water. In addition, note that the
entropy field in the water is not used, so we set it to zero for graphing purposes. The results
compare well with the solution computed in [33].

Note that the pressure evolution equation method in [18] has a difficult time dealing with
these sorts of contact discontinuities where the velocity and pressure are not both constant.

5.7. Example 7

We examine the convergence and conservation of a stable flow field with an interface.
The problem is linear advection of a helium bubble in air and the nondimensionalized initial
conditions are

(ρ = 1, u = 1, v = 1, p = 1, γ = 1.4) air (32)

(ρ = 0.138, u = 1, v = 1, p = 1, γ = 1.67) helium (33)

φ = −0.2+
√
(x − 0.25)2+ (y− 0.25)2 level set, (34)

whereφ≤ 0 represents helium andφ >0 represents air. No reinitialization of the level set
function was done. For this advection problem our scheme achieves the exact state in each of
the fluid regions, and the only error incurred is from the advection of the level set function.
This may seem like a trivial example, but most standard conservative or pressure evolution
schemes would smear out the density and possibly create spurious pressure oscillations.

A series of experiments was carried out on the unit square to measure the convergence
to the exact solution and to analyze how well the scheme conserves the mass of each fluid.
Zero gradient boundary conditions were used for the conservative fluid variables, and linear
extrapolation at the boundaries was used forφ. We used a centrally biased ENO scheme [29]
applied in a central framework [23, 34] with third order TVD Runge–Kutta time integration
and third order WENO for the advection ofφ [16]. We used1t = 0.11x and integrated to
t = 0.5. We measured two discrete errors, namely the L1 error in the density field,Eρ , and
the relative error in total mass of helium,EHe, at t = 0.5. The errors and numerical rates of
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TABLE I

Numerical Accuracy for Helium Advection in Air

1x=1y Eρ Rc EHe Rc

1/10 5.17× 10−2 5.00× 10−1

1/20 8.62× 10−3 2.58 8.16× 10−2 2.62
1/40 2.15× 10−3 2.00 2.03× 10−2 2.01
1/80 5.39× 10−4 2.00 5.02× 10−3 2.02

convergence,Rc, are given in Table I. Clearly the errors in both the density field and in total
mass conservation converge at second order.

5.8. Example 8

In this example, we will illustrate the difficulty in computing shear waves with shock
capturing schemes and demonstrate the potential benefits of our new method. A full com-
putational analysis of these issues will be treated in a future paper on viscous flow.

Consider a 1msquare domain withγ = 1.4, ρ= 1 kg/m3, andpL = 1×105 Pa everywhere.
An interface is located atx= 0.5m with tangential velocities ofv= 300m

s on the left and
v= 200m

s on the right. In addition, we impose a normal velocity ofu= 50 m
s directed to the

right. The flow is inviscid and a shear wave should be advected to the right with a perfect
slip boundary condition. We use a coarse mesh of 20 grid points in each direction and plot
the y= 10/19

m cross-section of this initial data in Fig. 25. A shock capturing scheme will
smear out this shear wave creating the errors shown in Fig. 26 at 0.0005 s and Fig. 27 at
0.005 s. Using the slip boundary condition in our new scheme results in an extremely sharp
solution as shown in Fig. 28 at 0.005 s.

FIG. 25. Shear wave—initial data.
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FIG. 26. Shear wave—standard scheme.

5.9. Example 9

We examine a Mach 1.22 air shock collapse of a helium bubble. Experimental results
may be found in [14] and a numerical solution using adaptive mesh refinement (AMR)
may be found in [32]. The physical initial conditions for this problem are given in Fig. 29,
where the upper and lower boundary conditions are a reflection for solid wall boundaries.
The left and right boundary conditions were zero gradient for the flow variables and linear

FIG. 27. Shear wave—standard scheme.
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FIG. 28. Shear wave—ghost fluid method.

extrapolation forφ. The nondimensionalized initial conditions are

(ρ = 1, u = 0, v = 0, p = 1, γ = 1.4) pre-shocked air (35)

(ρ = 1.3764, u = −.394, v = 0, p = 1.5698, γ = 1.4) post-shocked air (36)

(ρ = 0.138, u = 0, v = 0, p = 1, γ = 1.67) helium (37)

φ = −25+
√
(x − 175)2+ y2 level set, (38)

whereφ≤ 0 represents helium andφ >0 represents the air. The post-shock air state was
given forx> 225. No reinitialization of the level set function or isobaric fix was done. We
used a centrally biased ENO scheme [29] applied in a central framework [23, 34] with third
order TVD Runge–Kutta time integration and third order WENO for the advection ofφ

[16]. Note that the computational domain was only the top half of the physical domain with
a reflection condition applied atx= 0. A series of experiments was carried out at different
resolutions (1x= 2, 1, 0.5, 0.25) atCFL= 0.8.

Figure 30 shows an idealized Schlieren image corresponding to 427µs after the air shock
encounters the helium bubble (1x= 0.25). The image was generated in the exact same

FIG. 29. Physical domain for Example 9.
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FIG. 30. Schlieren image for Example 9 att = 427µs (rotated 90◦ clockwise).

manner as described in Subsection 3.3 of [32]. Also shown in Fig. 30 is a circle representing
the original helium-air interface to make the comparison easier with Fig. 9h of [32] and
Fig. 7h of [14]. The comparisons between the previous AMR solution and experiment
are in good agreement for the general bubble shape and position. There are differences in
the details of the interface, which is to be expected since for this problem the interface
is unstable, and without some regularization there will be no unique or resolved answer
to the Euler equations. For this problem the series of resolutions (1x= 2, 1, 0.5, 0.25)
gave (2.5%, 0.78%, 0.42%, 0.43%) as the time averaged relative percent errors in helium
mass, respectively. Clearly this error in conservation of mass is not very significant, and
although it appears to be generally getting better with resolution, we make no conjecture
that conservation will be achieved under resolution to unstable problems.

6. CONCLUSIONS

In this paper, we implemented a level set method for two phase compressible flow that
gives sharp resolution of contact discontinuities. A new Ghost Fluid Method was used to
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create a band of ghost cells that preserve the continuous pressure and velocity profiles at a
contact discontinuity, while removing the numerical dissipation associated with the discon-
tinuous entropy field (and the tangential velocity in the case of a shear wave). The resulting
numerical method produces sharp resolution of the Heaviside density and temperature pro-
files allowing one to treat interfaces where one of the phases has a stiff equation of state
that could erroneously produce cavitation for smeared out density profiles.

A number of numerical examples were studied in both one and two spatial dimensions.
Extensions to three dimensions are straightforward, but will be pursued elsewhere. We
experienced a small increase in computational overhead associated with the numerical
treatment of the scalar level set equation and the equations for reinitialization and ghost
cell population. Theoretically, these algorithms can be performed on a lower dimensional
subset of the mesh, see, for example, [1] and the references therein. While our codes did
not use these fast methods for the level set equations, we did apply the ghost cells in a thin
band about the interface increasing the computational cost by only a few percent over a
standard one phase calculation in most cases.

APPENDIX A: LEVEL SET METHODS

In this section, we present some of the relevant ideas for discretization of the level set
advection equation

φt + uφx + vφy = 0 (39)

and the reinitialization equation

φt + S(φo)
(√

φ2
x + φ2

y − 1
)
= 0. (40)

We also discuss the advection equation for ghost cells population and the isobaric fix

It ± nx Ix ± ny I y = 0, (41)

where we have usedN = 〈nx, ny〉.

A.1. Hamilton–Jacobi Discretization

Following [26, 27], we need to find a left sided and right sided discretization forφx which
we callφ−x andφ+x . The same procedure is applied toφy in the obvious fashion.

A.1.1. The 3rd Order ENO

We proceed along the lines of [30]. We will use polynomial interpolation to findφ and
then differentiate to getφx.

The zeroth order divided differences,D0
i , and all higher orderevendivided differences

of φ exist at the grid points and will have the subscripti . The first order divided differences,
D1

i+1/2, and all higher orderodddivided differences ofφ exist at the cell walls and will have
the subscripti ± 1

2.
Consider a specific grid pointi0. To findφ−x , setk= i0− 1. To findφ+x , setk= i0.
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Define

Q1(x) =
(
D1

k+ 1
2
φ
)
(x − xi0). (42)

If |D2
kφ| ≤ |D2

k+1φ|, thenc= D2
kφ andk?= k−1. Otherwise,c= D2

k+1φ andk?= k. Define

Q2(x) = c(x − xk)(x − xk+1). (43)

If |D3
k?−1/2φ| ≤ |D3

k?+1/2φ|, thenc?= D3
k?−1/2φ. Otherwise,c?= D3

k?+1/2φ. Define

Q3(x) = c?(x − xk? )(x − xk?+1)(x − xk?+2). (44)

And then(φ±x )i0 is

D1
k+ 1

2
φ + c(2(i0− k)− 1)1x + c?(3(i0− k?)2− 6(i0− k?)+ 2)(1x)2. (45)

A.1.2. The 5th Order WENO

We proceed along the lines of [17, 16]. Consider a specific grid pointi0.
To findφ−x , set

v1 = φi0−2− φi0−3

1x
, v2 = φi0−1− φi0−2

1x
(46)

v3 = φi0 − φi0−1

1x
, v4 = φi0+1− φi0

1x
(47)

v5 = φi0+2− φi0+1

1x
(48)

and to findφ+x , set

v1 = φi0+3− φi0+2

1x
, v2 = φi0+2− φi0+1

1x
(49)

v3 = φi0+1− φi0

1x
, v4 = φi0 − φi0−1

1x
(50)

v5 = φi0−1− φi0−2

1x
. (51)

Next we define the smoothness

S1 = 13

12
(v1− 2v2+ v3)

2+ 1

4
(v1− 4v2+ 3v3)

2 (52)

S2 = 13

12
(v2− 2v3+ v4)

2+ 1

4
(v2− v4)

2 (53)

S3 = 13

12
(v3− 2v4+ v5)

2+ 1

4
(3v3− 4v4+ v5)

2 (54)

and the weights

a1 = 1

10

1

(ε + S1)2
, w1 = a1

a1+ a2+ a3
(55)
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a2 = 6

10

1

(ε + S2)2
, w2 = a2

a1+ a2+ a3
(56)

a3 = 3

10

1

(ε + S3)2
, w3 = a3

a1+ a2+ a3
(57)

to finally get

(φ±x )i0=w1

(
v1

3
− 7v2

6
+ 11v3

6

)
+w2

(−v2

6
+ 5v3

6
+ v4

3

)
+w3

(
v3

3
+ 5v4

6
− v5

6

)
. (58)

Note that we useε= 10−6.

A.2. Convection

In order to solve

φt + uφx + vφy = 0 (59)

we look at the velocities. Ifui0 > 0, then we useφ−x . If ui0 < 0, then we useφ+x . If ui0 = 0,
then we do not need to choose either. The same considerations apply tov andφy.

A.3. Reinitialization

In order to solve

φt + S(φo)
(√

φ2
x + φ2

y − 1
)
= 0 (60)

we can rewrite it as

φt +
 S(φo)φx√

φ2
x + φ2

y

φx +
 S(φo)φy√

φ2
x + φ2

y

φy= S(φo) (61)

and considerS(φo)φx andS(φo)φy evaluated ati0 to determine the upwind directions [31].
We use a modification of Godunov’s method [27]. IfS(φo)φ

+
x ≥ 0 and S(φo)φ

−
x ≥ 0,

then we useφ−x . If S(φo)φ
+
x ≤ 0 andS(φo)φ

−
x ≤ 0, then we useφ+x . If S(φo)φ

+
x > 0 and

S(φo)φ
−
x < 0, then we useφx = 0. If S(φo)φ

+
x < 0 andS(φo)φ

−
x > 0, we define

s= S(φo)(|φ+x | − |φ−x |)
φ+x − φ−x

(62)

and ifs> 0, then we useφ−x . Otherwise we useφ+x .
The same procedure is repeated forS(φo)φy and the appropriate values forφx andφy are

plugged into Eq. (60).
Note that we smear out the sign function and define

S(φo) = φ√
φ2+ (1x)2

(63)

instead of the exact sign function.
We also use a limiter in the time evolution of the distance function to keep the interface

from crossing grid points.
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A.4. Ghost Cells

In order to solve

It + nx Ix + ny I y = 0 (64)

we use a first order ENO approximation toI +x and I −x as outlined above forφ. Note that
we use first order since theoretically this equation is solved to steady state.

We will also need to evaluate the unit normal

N = 〈nx, ny〉 =
〈

φx√
φ2

x + φ2
y

,
φy√
φ2

x + φ2
y

〉
(65)

at i0, e.g., using central differencing. It is usually helpful to use a temporary variable,φ̂,
when computing the normal. First copyφ into φ̂, reinitializeφ̂ to produce an approximate
distance function, then compute the normals usingφ̂. In this way one can get improved
values for the normal without losing accuracy in the original level set function,φ. Note that
caution should be used to avoid division by zero whenφx =φy= 0.

In nx > 0, then we useI −x . If nx < 0, then we useI +x . If nx = 0, then we do not need to
choose either. The same considerations apply to theny I y term.

In order to solve

It − nx Ix − ny I y = 0 (66)

we use−nx instead ofnx and−ny instead ofny in the procedure above.
We use+N to update the ghost cells withφ >0 and−N to update the ghost cells with

φ≤ 0, where we have chosen the convention thatφ= 0 belongs to the fluid withφ <0.
To apply the isobaric fix, we allow a band of the real fluid cells near the interface to be
populated along with the cells on the other side of the interface. In this case, we use+N to
update the cells withφ >−ε and−N to update the cells withφ <+ε whereε determines
the thickness of the band. For example, chooseε= 1.51x.

A.5. Time Evolution

The advection equation for the level set function is updated together with the Euler
equations.

The reinitialization equation is usually solved in fictitious time after eachfully complete
time stepfor the Euler equations. For example, set1τ = 1x

2 and take 10τ -steps with a 3rd
order TVD Runge–Kutta method to reinitialize about 5 cells on each side of the interface
to be approximately a distance function.

The advection equation for the population of ghost cells must be done after eachsubstep
of the time discretization for the Euler equations, in contrast to the reinitialization. For
example, the ghost cells must be populated after each Euler substep of a Runge–Kutta
method, whereas the reinitialization is done after each full Runge–Kutta step. This update
is also done in fictitious time. For example, set1τ = 1x

2 and take about 20τ -steps with a
3rd order TVD Runge–Kutta method to populate a small band of ghost cells. We caution
the reader that numerical dissipation could affect this ghost cell population and that they
may need more than 20 steps on occasion.
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A.6. Boundaries

The following boundary condition keeps the characteristics flowing outward for the level
set function. After updating the interior of the domain, we update the boundary points with

φB = φB−1+ S(φB−1)|φB−1− φB−2|, (67)

whereφB lies on the boundary andφB−1 and φB−2 are the adjacent points in a given
coordinate direction.
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